Ultra-thin Parylene Substrates for Organic Solar Cells

Joel Jean, Annie Wang, and Vladimir Bulović

Department of Electrical Enginering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA Contact: jjean@mit.edu, bulovic@mit.edu

10-

Introduction and Research Question

- Heavy glass substrates dominate the weight of conventional thin-film solar photovoltaic (PV) modules • Small-molecule organic PVs employ thin active layers
- Alternative plastic substrates have large surface defects that may exacerbate shorting in ultra-thin OPVs
- Here we investigate lightweight, flexible, transparent, vapor-deposited polymer films as substrate and encapsulation layers for organic solar cells

organic and nanostructured electronics ne ΔΒ

Key Results

- Vapor-deposited parylene C is a viable substrate and encapsulation material for organic solar cells
- Parylene-based devices achieve efficiencies (2.9%) comparable to conventional glass-based cells
- First *in situ* fabrication of a solar cell substrate
- Thinnest solar cell ever demonstrated: 1.3 μ m total

OPV on parylene substrate

Device structure and operation

Solar cell performance

Motivation

Solar Photovoltaic Technologies I odern human society uses enormous amounts V of energy. Our prodigious consumption has 50 Installed capacity (2011') [GW_p] spawned an energy sector that produces two-thirds of global greenhouse gas emissions¹. Mitigating climate change thus will require a massive shift from 30conventional fossil-fuel generation to low-carbon technologies, such as solar photovoltaics (PVs). 20-

Global energy consumption 140 PWh/year = $\sim 16 \text{ TW}_{avg}$ **Global solar technical potential**² 15,000 PWh/year **Global installed PV capacity (2012)**³

100 GW

Thick (3-4 mm) glass substrates dominate the weight and mechanical properties of today's thin-film solar cells, negating their key advantages over crystalline silicon. Conventional plastic substrates can be flexible and lightweight^{4,5,6}, but unavoidable surface roughness may cause shorting in ultra-thin small-molecule organic PVs.

In this work, we investigate an alternative polymer, Parylene C, which can be deposited *in situ* to form clean, flexible, transparent substrates with tunable thicknesses.

Light is absorbed primarily in the small-molecule organic donor DBP*

Solar photon flux DBP **V60** Ý88ťo 400 600 700 500 Wavelength [nm] DBP **U**₆₀ Energy ..**O ← O**... **Devices are peeled off** DBP = tetraphenyldibenzoperiflanthene glass carrier after fabrication C_{60} = buckminsterfullerene *BCP* = *bathocuproine*

Thermal evaporation of MoO₃, organic films, and Ag electrode

External quantum efficiency (EQE) spectra confirm measured photocurrents

glass and other cor	nmon sub	strate material	Is
14 14 E 12 E 12 Image: Section of the section		\$250/lb. dim 5% material 14.2 ¢/W _p	er use

\$50/lb. dimer

0.71 ¢/W_p

_ _ _ _ _ _ _

¹ Parylene (est.)

20% material use

All rights reserved by Jean, et al. Reproduced here with permission for educational purposes only.

