MRS Fall 2017, Boston

Cold-side Engineering of a Thermophotovoltaic System

Yi Huang¹, Yoichiro Tsurimaki¹, Wenjie Lu², Alon Vardi², Svetlana V. Boriskina¹, Jesus del Alamo² and Gang Chen¹

Session: ES09.10.06

Department of Mechanical Engineering¹ and Department of Electrical Engineering and Computer Science² Massachusetts Institute of Technology Cambridge, Massachusetts

Descriptive title immediately introduces the story of the presentation.

Nov 30, 2017

Thermophotovoltaics

Spectral control towards higher TPV efficiency

Title compactly introduces the message of the slide, with graphics to support, allowing the speaker to effectively discuss the details.

Simplified figure, large axes and label font. Graphically introduces a timeline to illustrate the rate of progress.

2D Photonic Crystal (Rinnerbauer)

Critical components of this image are labeled

Solar-TPVs (Bierman)

Wedlock B. D., Electron Devices Meeting, 8 (48), 1962 Wilt, D. M., et al., *AIP Conference Proceedings, 1995* Brown E. J. et al., Lockheed Martin Report (2004) Rinnerbauer et al., Energy Environ. Sci., 5, 8815-8823, (2012) Bierman et al., Nature Energy, 1 (6), 16068 (2016)

Cold-side Engineering of PV cells

Tong J., Hsu W.C., Huang Y., Boriskina S.V., Chen G., Scientific Reports 5 (2015) Ganapati V., Xiao, P., Yablonovitch, E., arxiv 1611.03544 (2016)

Standard PV cells not optimized for TPVs

A longer title clearly introduces a problem to be solved.

Introducing a roadmap diagram of the system, which will help locate the audience to where we are in the presentation and what part of the system is being discussed.

What causes high infrared absorptance?

Boxing an important question or takeaway focuses the audience's attention.

TPV Optical and Electrical Efficiency

Boxing the diagrams visually shows the distinction in two methods of modeling.

Parasitic absorption in PV cells

Short-phrase title introduces the sub-problem being solved on this slide. Combined with the diagram, it immediately answers "what problem in what part of the system?"

INSTITUTE OF TECHNOLOGY

Parasitic absorption in PV cells

not supposed to be associated from figure to figure are not.

NanoEngineering Group

TECHNOLOGY

Electrical Efficiency and Sheet resistance of PV cells

NanoEngineering Group

9

TECHNOLOGY

Cells Designed for high system efficiency

Summary & Future Plans

Bolding and colored text highlights the audience to the key impacts that have been achieved or are desired to be achieved. Surrounding texts briefly reminds how this was achieved.

- Minimize doping and layer thickness of emitter and high doped region to decrease sub-bandgap absorptance due to free carriers
- Minimize thickness of substrate due to free carriers and phonon absorption modes
- Moderately doped thin n-type layer can **maintain good electrical efficiency** due to high short circuit current
- Finger spacing of front contacts needs be optimized to reduce power loss due to sheet resistance without increasing parasitic absorption
- We intend to fabricate designed cells and test its system efficiency

Acknowledgement

- Prof. Gang Chen, Prof. del Alamo, Prof. Evelyn Wang
- Dr. S.V. Boriskina, Y. Tsurimaki, Dr. A. Vardi, W. Lu, L. Manoush, T. Cooper, C. Kelsall, A. Leroy, Dr. B. Bhatia
- NanoEngineering group
- DOE, EFRC S3TEC center
- DOE BES

Acknowledgements is a great concluding slide. If appropriate, any support slides can go after.