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Introductions: Myself

Previous Positions

3

Personal Interests

- Ultramarathons
- Ice Climbing
- Drag Shows

● Education
○ BS Purdue University
○ MS in AeroAstro from MIT 

● 4th year graduate student in AeroAstro
○ Been a lab member for 8 months

Your personal introduction can have a more 
formal or informal tone depending on the 
relationship you have with your advisor. 

If you frequently discuss non-research topics 
with your advisor and feel that some hobby or 
piece of background about your life is 
important for your committee members to 
know, you should include it!

BLUE ORIGIN 

Am; Research Center® 

Advanced 
S P A C E 

@) AEROSPACE ~ Nanoracks 
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Proposed Set of Classes

5

Course # Course Title 

16.413 Principles of Autonomy 

16.32 Optimal Control

16.485 Visual Navigation for Autonomous Vehicles

18.0651 Matrix Methods in ML

16.332 Formal Methods for Safe Autonomous Synthesis

Course # Course Title

16.842 Fundamentals of Systems 
Engineering

16.851 Satellite Engineering

12.540 Principles of GPS

Proposed Minor: Satellite Systems
Proposed Major: Autonomy

Course # Course Title

18.0651 Matrix Methods in Machine 
Learning

6.720 Optimization Methods 

16.995 Doc Research & Comm 

Somewhere in your presentation, 
include your proposed major and minor 
of study. Including the grades you got in 
those classes is optional,
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Motivation: Context
The number of satellites and operators in orbit is growing drastically. 

6

Source: https://www.esa.int/ESA_Multimedia/Images/2019/10/Distribution_of_space_debris_around_Earth

Even if your committee members are all 
experts in your area, its still best to start 
with a high level motivation for your work - 
pretty graphics work great here
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Therefore, autonomous decision making for space traffic management 
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The decision whether or not to move is fundamentally a question about 
the relationship between uncertainty and information sharing. 
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Graph Neural Networks

8

To use a graph neural network, first we have to create a graph representation of 
the environment. We assume that each satellites can communicate to other 
satellites and pieces of debris within their sensing radius. 

For committee members unfamiliar with the methods you 
use, you should provide a high level explanation of how 
your technique works. It doesn’t have to be a proof, you 
only need to list key assumptions and the inputs and 
outputs
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Reinforcement 

Learning Algorithm

Algorithm Description
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Sensitivity Study (In Progress)

Sharing goals leads to improvements 
in reward per step, collision rates, and 
task completion rates

However, reward/task completion 
rates are closely linked with episode 
length, and time step. As a result, we 
are investigating these further to 
determine their impact on sharing. 
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Summary and Takeaways

● Graph neural networks are a valuable abstraction to successfully 
model cooperative local information sharing between satellite 
operators

● Preliminary Results on goal sharing demonstrate that sharing this 
information improves agent performance

15

Your first committee meeting can 
range anywhere from 30-90 minutes, 
so include a summary slide as a 
refresher of the key points of your 
work 
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Ongoing and Planned Future Work

● Sensitivity Work
● Heterogeneous Decision Making Windows

○ How does cooperation change when operators have different 
abilities/observation times

● Developing strategies for non-cooperative scenarios

○ Relying on game-theory to recommend manuevers for different ability 
levels and confidence intervals

16

Your future work can outline work you 
plan as your contributions for your 
proposal – this gets you early feedback 
from your committee if they approve 
about your intended phd contributions
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Next Steps

Planning Proposal Defense June/July

17

Always include when you want to meet 
with your committee next! Get it on their 
radars now.

111ii 
~ 

DINaMo Next Steps

Planning Proposal Defense June/July

17

Always include when you want to meet 
with your committee next! Get it on their 
radars now.

111ii 
~ 

DINaMo Next Steps 

Planning Proposal Defense June/July 

Always include when you want to meet 

with your committee next! Get it on their 

radars now. 

17 

1 1 1 i i 

@1 
DINaMo 



Backup Slides

18

Backup slides are a great way to include:
- Information you don’t have time to 

talk about but might get questions 
on 

- Prepared answers to questions you 
might get

- More detailed versions of presented 
slides
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