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Abstract—One of the largest sources of uncertainty in climate 
research is aerosol-cloud interaction. Our capabilities to increase 
our understanding are limited by the quantity and quality of 
cloud measurements we can make. Traditional, nadir-pointing 
satellites waste time and power by measuring clear skies while 
potentially missing high-value cloud measurements just off-nadir. 
With the conclusion of the CloudSat and CALIPSO missions, 
there is a need for new satellites to monitor clouds. New satellites 
have an opportunity to take advantage of advanced remote 
sensing techniques such as autonomy to improve the yield of 
high-value cloud measurements. In this paper, we present a 
proof of concept for an autonomously pointing satellite that can 
dynamically target off-nadir clouds. We develop a simulation 
environment that evaluates the capabilities of different algorithms

and satellites to complete this task while managing power and 
memory storage. We build this simulation with MODIS cloud 
masks, which contain data for cloud cover percentages, existence 
of cirrus clouds, and light/eclipse status. We analyze data from 
January 2010, when the CloudSat mission was in full operation. 
We compare the number of clouds measured by algorithms we 
developed (binary toggle, greedy, nearest greedy, and distance 
weighted) to CloudSat’s performance during the same period.

Our best performing algorithm measures, on average, 60 percent 
of cloud cells with low variance, compared with CloudSat’s 
less than 40 percent with high variance. Dynamic targeting

satellites can substantially enhance cloud monitoring and improve 
our ability to understand aerosol-cloud interactions for climate 
research. 

Index Terms—dynamic targeting, clouds, aerosols, climate, 
autonomy, satellite, remote sensing 

I. INTRODUCTION 

According to the 2013 report of the Intergovernmental Panel 
on Climate Change (IPCC), aerosol-cloud interaction is a 
major challenge in climate modeling [1]. In their 2021 report, 
they reaffirm clouds as “the largest contribution to overall 
uncertainty in climate feedbacks” [2]. 

There have been many satellites focused on cloud observa-
tion, such as NASA’s CloudSat and CALIPSO [3, 4], which 
ended operations in 2023, ESA-JAXA’s EarthCARE [5–7], and 
NASA’s PACE [8, 9]. Continued innovation in future missions 
will be necessary to address the needs of climate models. From 
2018-2021, NASA held an Aerosol, Clouds, Convection and 
Precipitation Study, where they expressed a desire to improve 
measurements by using AI “for targeted observations: many 
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of our cloud satellites spend a lot of their time observing clear 
air [10].” 

A targeted observation system has been proven on JAXA’s 
GOSAT-2, a satellite that monitors greenhouse gasses. It uses a 
camera to find cloud-free areas in its field of view, then uses a 
pointing mirror to measure them [11–13]. While useful to get 
higher quality measurements, this system lacks the ability to 
plan for future observations. JPL’s upcoming SMICES small 
satellite seeks to use a radiometer to plan targeted radar 
measurements of ice storms [14, 15]. They have analyzed 
systems for cloud avoidance [16, 17] and storm tracking 
[18] with a variety of algorithms [19]. These studies did not 
include explicit simulation of satellite systems, instead using 
proxies [20]. Other work has been done looking at long-term 
planning for scheduling observations [21] and on analyzing 
the capabilities of a body-fixed “lookahead” sensor [22]. 

There has not yet been a general simulation that demon-
strates and analyzes the activities of a targeted observation 
satellite. This is important for ensuring feasibility of a real 
life system, particularly in power usage. Having a general 
simulation also makes it easier to compare multiple similar 
mission configurations. 

In this work, we develop a simulation to explore multiob-
jective prioritization for cloud measurements on a modeled 
satellite system. We compare the historical performance of 
CloudSat to a simulated satellite that plans its activities using 
a prioritization algorithm: binary toggle, greedy, a variant 
on greedy, or distance weighted. We also analyze different 
sizes of planning windows for these algorithms to plan on. 
We analyze the efficiency of each of these algorithms at 
measuring clouds given their action choices, power utilization, 
and storage management. 

II. METHODOLOGY 

A. Simulation 

A high-level look at the architecture of the simulation is 
shown in Figure 1. It is designed similarly to a reinforcement 
learning framework, with an agent taking an action, receiving 
updated states, taking another action based on that, and so on. 

The Earth module of the environment contains the state of 
the physical world. It is built from 1 km resolution cloud masks 
derived from the MODIS instrument on the Aqua satellite 
[23]. This works especially well for simulating CloudSat 
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Fig. 1. The simulation software diagram. An agent, controlled by an 
algorithm, decides which action the satellite should take based on its and the 
Earth’s state. The satellite performs that action, and both states are updated. 
This new state is sent back to the agent, and the cycle continues. 

performance, as it was in the same A-Train orbit as Aqua 
from 2006 to 2018. By using measurements from MODIS, 
we have a representative depiction of what CloudSat could 
have measured in that time period. 

To make the Earth environment, we break the cloud mask 
into cells the size of the footprint of CloudSat’s radar. Each cell 
contains four pieces of information: the percentage of cloud 
cover, if it contains a cirrus cloud, if it contains a ground 
station (we use the NASA Near Earth Network), and if it is 
in light or eclipse. This data is communicated to the satellite 
via a planning window: a square of cells ahead of the satellite 
it has full knowledge of. At each step of the environment, 
the satellite is moved forward by one cell and the planning 
window is updated by the next row of cells. 

The satellite simulation contains parameters for the satellite. 
It has states for its instrument, its battery, its ADCS system, 
its onboard storage, and its communication system. At each 
time step in the simulation, the agent can have the satellite 
perform one of four actions: toggle the instrument on or off, 
downlink, slew to target, or do nothing. 

When the satellite is given an action, it calculates the power 
and memory storage loss for that action and, if both are 
sufficient, it performs the action and updates its state. If the 
instrument is on and the satellite is not actively pointing, then 
the cell it is pointing to is measured. Slewing time and power 
usage is calculated by using a bang-off-bang controller. If one 
time step is shorter than the time to slew to the desired target, 
the satellite cannot take any more actions until it is finished 
slewing. If the satellite ever runs out of battery or storage, it 
uses its next action to automatically shut the instrument down. 

The simulation can render the environment to help visualize 
the actions of the satellite. This render is done using the 
Pygame engine (pygame.org), and is shown in Figure 2. 

B. Limitations 

There are several limitations to the simulation in its current 
state. First, the timing and the resources necessary to acquire 
new planning windows must be accounted for. These windows 

Fig. 2. A render of the simulation in Pygame. The green circle is the satellite. 
The semi-transparent box is the planning window. The purple square is the 
pointing location. The grid cells are colored by their cloud percentage: blue 
means empty, while white means cloudy. The darker cells indicate eclipse. 

would be subsets of larger lookahead images. In a real system, 
a new lookahead image must be acquired, processed, and 
planned upon before the satellite moves past the end of the 
previous one. A lookahead image can be obtained either by 
periodically pointing the satellite forward or by using a second 
satellite to capture and send it. The image would be processed 
by converting it to binary cloud masks, identifying cloud types 
of interest, and dividing it into planning windows. On-orbit 
cloud segmentation is well studied [24–27], and, timewise, 
scales linearly with the number of pixels. To make power and 
time estimates for onboard performance, these algorithms can 
be broken into their basic computational structures [28] and the 
performance of those functions can be benchmarked on space 
processors [29]. This same process can be used to assess the 
power requirements of the planning algorithms. With current 
estimations, we have determined a lookahead image with a 
100 km length can meet movement requirements. 

Performance of instruments when used off-nadir is also not 
currently captured. Active instruments that rely on distance 
to targets – lidars, radars – can have increased error the 
further off-nadir they point. Errors in beam location [30] and 
Doppler shift [31] from pointing errors are exacerbated at 
large angles. However, these errors are seen in applications 
that use concentrated beam returns, like altimetry off of the 
ocean. Because clouds give diffuse lidar and radar responses, 
we expect these errors to be limited. Nevertheless, we plan to 
integrate pointing limitations for active instruments. 

In the future, we plan to simulate optical instruments. Many 
optical instruments – radiometers, polarimeters – only work in 
the light, and also require measurements to be taken at certain 
solar zenith angles. This is both to ensure compatibility with 
look up tables and to avoid unfavorable solar zenith angles, as 
high angles affect retrieval of many important cloud properties 
[32]. Limitations on pointing angles will be included. 

C. Base Case 

Because our goal is to improve the performance on cloud 
satellites of the past, we use CloudSat as a reference case. We 
analyze data from January 2010, before CloudSat moved out 
of the A-Train orbit. CloudSat is represented with a baseline 
algorithm that toggles its instrument on a fixed duty cycle. 

maryd
Rectangle

maryd
Limitations

maryd
Rectangle

maryd
Experimental set up

maryd
Rectangle

maryd
Rectangle

https://pygame.org


�

�

�

D. Algorithms 

We analyze four different algorithms for this work: bi-
nary toggle, greedy, nearest greedy, and a distance weighted 
method, inspired by A*. All algorithms that can slew to a 
target follow a common structure, only varying the method by 
which the target is chosen. They prioritize, in this order: 

1) Turning off the instrument if the battery is  30% 
2) Turning on the instrument if the battery is > 30% 
3) Slewing to a ground station and downlinking if the buffer 

is 80% 
4) Picking a cloud cell to point to 
Each algorithm has the same scoring system to rank cells: 

ClearP ixels 
CloudScore = w1 + (1  w1) ⇤ Cirrus (1)

TotalP ixels  
Where Cirrus is a binary value of the presence of a cirrus 
cloud (0 meaning present, 1 meaning not present) and w1 

is adjusted to change the priority of choosing a cell with 
high cloud cover and a cell with a cirrus cloud. The best 
CloudScore has a value of 0, meaning complete cover and a 
cirrus, and the worst has a value of 1. All algorithms are also 
constrained to not measure the same cell multiple times. 

1) Binary Toggle: The satellite checks the next cell it would 
measure. If the cell has a CloudScore below 0.5, it turns 
the instrument on. If not, it turns it off. After the satellite 
downlinks, it returns to point nadir. This algorithm prioritizes 
battery life above all. 

2) Greedy: The satellite tries to point at the cell with 
the best CloudScore, regardless of how long it will take 
to slew. While likely to score the highest amount of cloud 
measurements, it is likely to waste power and time resources 
by slewing frequently. 

3) Nearest Greedy: This variant looks to restrict the amount 
of slewing. The satellite looks at the cells with the n most 
valuable CloudScores. It then targets the one that is closest 
to the current pointing position. Tuning the value for n is 
problematic: if n is too small, the algorithm misses nearby 
cells that score slightly worse, and if n is too big, it acts too 
similarly to greedy. We set n to the number of cells divided 
by 100, but restrict it to at least 4 and at most 50. 

4) Distance Weighted: Each cell is scored with both its 
CloudScore and by its distance, D, to the current pointing 
location by the equation: 

DistanceScore = w2 CloudScore + (1  w2)D (2) 

Where w2 can be adjusted to favor nearby cells or 
CloudScore. The satellite then points to the cell with the 
best DistanceScore. We used a w2 of 0.4. This algorithm is 
the most computationally expensive of the four options. 

We considered other path planning algorithms, such as RRT 
or reinforcement learning, but determined they added more 
complexity than was necessary to solve the planning problem. 

E. Assessment Criteria 

The algorithm variations are summarized in Table I. We 
analyze different sizes of planning windows to evaluate how 

more options affects the decisions the algorithms make. We 
also vary weighing cloud percentage and cirrus presence 
equally (w1 = 0.5) and favoring cirrus clouds (w1 = 0.05). 

TABLE I 
THE ALGORITHM VARIATIONS THAT WERE TESTED FOR THIS STUDY. 

Algorithm Planning Window (km) Priority 

Baseline (CloudSat rep) 
Binary Toggle 

Greedy 
Nearest Greedy 

Distance Weighted 

x 
x 
10, 14, 16, 20, 100 
10, 14, 16, 20, 100 
10, 14, 16, 20, 100 

Equal, cirrus 
Equal, cirrus 
Equal, cirrus 
Equal, cirrus 
Equal, cirrus 

Each algorithm variation is simulated over a week at a time. 
We assess the performance on the efficiency and the quality of 
its measurements. For efficiency, we look at what the algorithm 
chose to do. We assess this on both the frequency of action 
choices and on the total power expenditure. For quality, we 
look at the number of cells measured in three categories: any 
amount of cloud cover, over 50% cloud cover, and if they 
contain a cirrus cloud. These are compared to a maximum, 
calculated by choosing the best cell at each time step, ignoring 
pointing, power, and planning window size limitations. 

We considered using the amount of clouds downlinked as a 
metric, but we found that each algorithm was able to downlink 
all cells that were measured, so it is not presented here. 

III. RESULTS 

A. Actions 

Figure 3 shows how often a subset of the algorithms 
chose each action from January 22-28 (other weeks were 
similar). These match our instincts – the greedy and nearest 
greedy algorithms point the most, while the distance weighted 
algorithms are more conservative. Binary toggle downlinks 
the least as it fills its buffer slowest. When the algorithms 
have larger planning windows, they spend slightly more time 
pointing and much less time toggling their instrument, as they 
less frequently are in situations with no good measurements. 

Fig. 3. The frequency of actions taken by each algorithm for the smallest 
and largest planning windows. The majority of time is spent doing nothing 
(typically making measurements), pointing (if capable), or toggling. Note the 
log scale on the y axis. 

B. Battery 

Most algorithms performed similarly, utilizing approxi-
mately 300 Wh over one eclipse period (about 45 minutes) 
and never fully depleting. The exception was binary toggle, 
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which used only 200 Wh. Greedy with the largest planning 
window was the second most efficient (270 Wh), followed 
by the nearest greedy with the largest planning window (278 
Wh). This is due to how slewing to point works. While the 
satellite is pointing, it automatically turns the instrument off. 
Because greedy algorithms take the “point” action the most, 
they ultimately save battery by having their instruments off 
most frequently. Toggling frequently may have adverse affects 
on the long-term health of a real instrument, so analysis of this 
method versus going into a low power state is future work. 

C. Cloud Measurements 

Figure 4 shows the percentage of the maximum cloud 
measurement each algorithm achieved. This plot shows the 
average performance of one week over the month. The baseline 
measures, on average, 40% of cloudy cells, with large variance 
for every metric. Its performance is solely decided by how 
cloudy the center of the swath is. It has similar performance 
to all 10 km slewing algorithms. Binary toggle appears to be 
the worst performing algorithm. However, it has the highest 
proportion of cells with 50% of clouds and cirrus cells of any 
algorithm. It also has very low variance, as, regardless of how 
cloudy or not in the center of the swath, it will always act the 
same way. 

On average, the best performing slewing algorithm at all 
planning window sizes is nearest greedy. The 100 km window 
measures over 60% of the maximum number of cloudy cells 
with low variance. While performance improves for all slewing 
algorithms as the planning window size increases, both in 
average number of measurements and in variance, there are 
diminishing returns. This corresponds to action choice. Larger 
windows mean there are more valuable cells available at each 
time step, but to reach them, more time is spent pointing 
instead of measuring. 

Fig. 4. The results of each algorithm variant. Larger planning windows 
increase the quantity of measurements considerably, but there are diminishing 
returns for windows greater than 20 km. 14 and 16 km omitted for simplicity. 

We also look specifically at cirrus collection by adjusting 
the weight w1 from Equation 1 in Figure 5. Binary toggle 
sees significant improvement in the cirrus collection. There 
is a small improvement for distance weighted, as, because it 

spends less time pointing than the other slewing algorithms, 
it has more time to measure more cells overall. 

Fig. 5. The difference in cirrus collection for each algorithm under different 
values for w1 in Equation 1 (lower weights mean cirrus priority). Binary 
toggle and distance weighted both show improvement. 

IV. DISCUSSION 

There are several insights from the different algorithm 
variants. First, the runs with only a 10 km planning window 
barely outperformed the baseline. As the planning window 
increases in size, performance also increases. This rate slows 
at around 20 km, indicating anything larger than that is un-
necessary. Nearest greedy was the best performing algorithm. 
Its limitation on pointing caused it to spend less time than 
greedy pointing at slightly more optimal cells that were far 
away. While binary toggle measures the least clouds overall, its 
power savings and high proportion of good measurements to 
total measurements makes it an excellent option for low budget 
missions that cannot afford slewing or a complex lookahead 
system where quality is more important than quantity. The 
distance weighted algorithm was successful at limiting point 
actions, but it came at the cost of performance. 

In future work, we will make the simulation more accu-
rate by improving on the previously mentioned limitations. 
For lookahead image capturing, we will simulate different 
architectures. For instance, if there is only one satellite, 
the distortions in the image from body pointing may affect 
masking and therefore cell selection. If there are two satel-
lites, computation responsibilities could be distributed between 
them, but crosslinks become important to analyze. We will 
integrate instrumentation slewing requirements. We plan to 
simulate radars, lidars, polarimeters, and radiometers, and will 
analyze their relative viability in a dynamic environment. 

This work provides strong baseline for future mission de-
sign using an autonomous targeting and planning approach. 
Our methods consistently provide a higher quantity of high 
quality measurements than CloudSat. With the development 
of this simulation, we can continue to assess a multitude of 
instruments and mission architectures to best quantify options 
for real missions. 
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