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Planning the assembly sequence is a critical challenge for the robotic construction of structures, particularly for maintaining sti↵-
ness during the construction process. To aid the assembly sequence planning for truss structures, this paper presents an algorithm for 
sampling Euler paths which expand radially from a starting node. We show that such paths are desirable as they result in intermedi-
ate structures with dramatically higher natural frequency than those from randomized assembly sequences. The algorithm is widely 

applicable to scenarios where intermediate sti↵ness is required, such as in-space assembly and manufacturing, and motivates future 

research into other sampling strategies for the assembly of truss structures. 
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1. Introduction 

The robotic assembly of truss structures is promising for au-
tomating ground-based construction tasks1) and enabling novel 
applications such as the in-space assembly and manufacturing 
of support structures.2) Some recent approaches to robotic truss 
assembly include: assembling cellular structures with a mo-
bile robotic platform,3) assembling pre-fabricated struts with 
a robotic manipulator,4) reconfiguring a modular chain,5) and 
plastically deforming metal rods into wireframe structures.6) 

For all these approaches, one key challenge is planning the as-
sembly sequence, as many exist for the same truss geometry. A 
truss geometry can be represented as a graph with nodes and 
edges (Fig. 1), so the assembly sequence corresponds to a path 
that traverses all the edges, i.e., an Euler path. However, the 
number of possible Euler paths increases rapidly with graph 
size,7) making it di cult to find optimal assembly sequences 
that maximize important performance metrics. For example, the 
on-orbit construction of support structures will require main-
taining sti↵ness and surface precision during assembly to en-
sure structural stability and geometrical accuracy of the final 
shape.8) 

Given the large design space of assembly sequences for truss 
structures, previous work has used hierarchical representations 
of truss sub-assemblies9) and graph search algorithms to find 
sequences that optimize specific cost functions.10) While this 
approach works well for relatively simple trusses, it scales 
poorly with structural complexity. Randomized optimization 
techniques, such as particle swarm optimization11) and flower 
pollination,12) have shown promise for complex assembly se-
quences, but their computational complexity also increases with 
graph size. 

An alternate approach to assembly sequence planning for 
complex truss geometries is to develop sampling methods for 
assembly sequences and understand their performance with rel-
evant metrics. This approach explores the design space and al-
lows identification of heuristics that lead to optimal assembly 
sequences, and is the approach taken in the present work. In 
particular, we present an algorithm for sampling radially ex-
panding Euler paths for the assembly of truss structures. The 
algorithm is based on a classical algorithm for computing Euler 
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Fig. 1. Geometries of (a) 2D equilateral triangle and (b) 3D 
tetrahedral truss, parameterized by the strut length L and 
number of units N. All struts have equal length. 

paths through an undirected graph, but incorporates a locally 
optimal criterion for selecting edges that minimize distance to 
the partially assembled structure. For the application of truss 
assembly, we show that such paths are desirable as they result 
in sti↵er intermediate structures with higher fundamental natu-
ral frequency than other randomized assembly sequences. 

The remainder of the paper is organized as follows. Sec-
tion 2. describes the algorithm for radially expanding Euler 
paths and the modeling framework for computing the sti↵ness 
of intermediate structures. Section 3. compares the perfor-
mance of this algorithm with a classical algorithm for comput-
ing Euler paths in terms of the fundamental natural frequency. 
Finally, Section 4. provides a summary and directions of future 
work. 

2. Methods 

2.1. Radially Expanding Euler Paths 
The classical method to compute an Euler path through an 

undirected graph is via the route inspection algorithm.7) This 
algorithm has two steps: First, the minimum number of doubled 
edges are added to the graph until it satisfies Euler’s theorem, 
which holds that there exists an Euler path if and only if there 
are no more than two nodes with odd degree. Typically, this 
step is completed by finding a minimum-weight perfect match-
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ing that connects the odd degree nodes while minimizing the 
total length of the added paths.13) Second, an Euler path is com-
puted through the graph using either the Hierholzer or Fluery 
algorithms. For a graph with n edges, the Hierholzer algorithm 
has complexity O(n) and finds closed loops in the graph before 
concatenating them into one continuous Euler path.14) Com-
paratively, the Fluery algorithm has complexity O(n2) and con-
catenates neighboring edges into an Euler path without creating 
bridges. Both these algorithms result in randomized Euler paths 
that traverse all edges of the graph from a specific starting node. 

In this work, we are interested in sampling Euler paths which 
radially expand from the starting node. For the assembly of 
truss structures, the intuition is that such paths correspond to 
sequentially adding struts around the circumference, resulting 
in greater sti↵ness during construction. To this end, we modify 
the Fluery algorithm with a specific criterion for adding edges 
to the Euler path: only select neighboring nodes that minimize 
the Euclidean distance to nodes already in the path. This locally 
optimal criterion selects edges closest to the partially assembled 
geometry at each step and yields a path that expands radially 
outward from the starting node, as illustrated in Fig. 2. The 
pseudocode for this algorithm is summarized in Algorithm 1, 
with the key selection criterion highlighted in red. As this algo-
rithm is based on the Fluery algorithm, it also has complexity 
O(n2). 
2.2. Finite Element Analysis 

To understand the sti↵ness of intermediate structures that re-
sult from radially expanding Euler paths as compared to ran-
domized paths, we use finite element modeling. Specifically, 
we compute the fundamental free-free natural frequency of var-
ious intermediate structures resulting from the Euler path, an 
important performance metric for the assembly of precise truss 
structures.8) 

Focusing our analysis to the geometries of Fig. 1, we com-
pute a discrete number of intermediate structures from a spe-
cific Euler path and use the finite element software Abaqus to 
compute their fundamental natural frequencies f0. Here an “in-

Algorithm 1: Radially Expanding Euler Paths 

Input: Eulerian graph G(V, E), node coordinates pos 

Output: Euler path epath 

1 epath [random node in G] 
2 while epath not complete do 

3 u = epath(end) 
4 centroid = mean(pos(epath)) 
5 neighbors = nodal neighbors of u sorted by Euclidean 

distance to centroid 

6 k = 1 

7 while node not added to epath do 

8 v = neighbors(k) 
9 if edge (u,v) is not a bridge then 

10 append v to epath 

11 else 

12 k = k + 1 

13 end 

14 end 

15 end 

16 return epath 

(a) (b) 

Fig. 2. Radially expanding Euler paths for (a) 2D equilat-
eral triangle and (b) 3D tetrahedral truss that grow from 
the starting node highlighted in green. 

termediate structure” refers to a truss geometry before all the 
struts have been assembled. For the geometric and material 
properties, representative values are chosen for carbon fiber-
reinforced plastic (CFRP) struts with length L = 1 m, density 
⇢ = 1600 kg/m3, circular cross section with diameter d = 5 cm, 
and elastic properties EY = 325 GPa and and ⌫ = 0.3. Lin-
ear beam elements (B31) are used to mesh the geometry with 
10 elements along each strut, and all six degrees of freedom 
are kinematically coupled between the connected struts at each 
node. An eigenvalue analysis is performed to compute the fun-
damental free-free natural frequency. 

3. Results 

Fig. 3 plots the computed fundamental natural frequencies of 
intermediate structures from 25 sampled radially expanding and 
randomized Euler paths for both the 2D equilateral triangle and 
3D tetrahedral truss. The natural frequencies are plotted against 
an assembly percentage that represents the ratio of struts tra-
versed by the path to the total number of struts. Here the Hier-
holzer algorithm was used to compute randomized paths while 
Algorithm 1 was used to generate radially expanding paths from 
a randomly selected starting node. Table 1 highlights a com-
parison of the minimum natural frequency and compute time 
between the two sampling approaches. 

The results of Fig. 3 shows that radially expanding paths dra-
matically increase the minimum natural frequency of interme-
diate structures, by up to ⇠10x and 100x for the equilateral tri-
angle and tetrahedral truss, respectively. The underlying reason 
is that the radially expanding paths result in intermediate struc-
tures with minimal unsupported struts. By contrast, the random 
paths result in large regions of unsupported struts and hence 
lower natural frequencies, as illustrated by the comparison of 
vibration mode shapes in Fig. 4. 

Additionally, Fig. 3 shows that radially expanding paths re-
sult in decreased variance in natural frequency than the random-
ized paths. This is attributed to the radial symmetry of the truss 
geometries of Fig. 1, as all the radially expanding paths have 
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Fig. 3. Fundamental free-free natural frequency of intermediate structures from 25 radially expanding and 
randomized Euler paths for (a) 2D equilateral triangle and (b) 3D tetrahedral truss. Dashed lines plot data for 
all sampled paths and solid lines plot the average. Radially expanding paths result in structures with significantly 
higher natural frequency. 

(a) (b) 

Fig. 4. Fundamental free-free vibration mode shapes from a radially expanding and randomized Euler path for 
(a) 2D equilateral triangle and (b) 3D tetrahedral truss at 50% assembly. The radially expanding path results in 
minimal unsupported struts. 

Euler Path Geometry Minimum Natural Frequency, f0 [Hz] Compute Time [min] 

Radially Expanding 
Fig. 1a 
Fig. 1b 

6.23 
82.3 

110 
130 

Random 
Fig. 1a 
Fig. 1b 

0.63 
0.84 

100 
110 

Table 1. Comparison of minimum natural frequency and compute time for the sampled radi-
ally expanding and random Euler paths in Fig. 3. 

similar intermediate structures regardless of the starting node. ized paths (cf. Fig. 4b). Together, the results of Fig. 3–4 demon-
Further, for the tetrahedral truss, radially expanding paths main- strate that radially expanding paths significantly improve inter-
tain a nearly constant natural frequency throughout the assem- mediate sti↵ness and highlight the e↵ectiveness of Algorithm 1 
bly sequence. This is because the vibration mode of each in- in sampling Euler paths for complex truss geometries. 
termediate structure is dominated by the local deformation of 
a few unsupported struts around the circumference, unlike the 
global deformation of many unsupported struts for the random-
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