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Abstract 

Neural networks (NNs) are becoming increasingly popular in the design of control pipelines 
for autonomous systems. However, due to the unpredictable nature of NNs, systems that 
have NNs in their control pipelines, i.e., neural feedback loops (NFLs), need safety assurances 
before they can be applied in safety-critical situations. To address this need, this thesis inves-
tigates reachability for safety verifcation of practical NFL verifcation problems. In practice, 
NFLs often have sophisticated autonomy pipelines consisting of estimation, planning, and 
control modules with highly nonlinear closed-loop behavior that needs to be verifed over 
long time horizons. These factors pose challenges to existing techniques, which calculate 
reachable set over-approximations (RSOAs) as a tractable alternative to exact reachable 
sets. While relatively efcient to calculate, RSOAs can be prohibitively conservative given 
nonlinear dynamics and NN control policies. Moreover, existing techniques consider simple 
control pipelines, typically consisting of just an NN controller with full state feedback. To 
address these issues, this thesis proposes three contributions: First, we propose a method to 
reduce conservativeness of RSOAs for NFLs in a way that scales well with both the state 
dimension of the system and the time horizon of the verifcation problem. Second, we pro-
pose methods to incorporate reachability into the NN controller’s learning pipeline to create 
verifable-by-design policies that can be more easily verifed as safe. Finally, we investigate 
ways to verify safety for NFLs that consist of complicated autonomy pipelines consisting 
of estimation, planning, and control modules, any combination of which may be NN-based. 
The results of this thesis will greatly broaden the types of NFL verifcation problems that 
can be solved, thus enabling the safe application of NFLs for real-world autonomy. 
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1 Problem Statement 

This thesis investigates the problem of safety verifcation for autonomous systems that have 
neural networks (NNs) embedded in feedback loops within their autonomy pipelines. These 
systems are hereafter referred to as neural feedback loops (NFLs) and pose specifc chal-
lenges with respect to safety verifcation due to the complicated and nonlinear nature of 
the underlying NNs. Interval-based reachability analysis provides a highly generalizeable 
framework for safety verifcation of NFLs, but needs further advancement to address ver-
ifcation problems representative of the real-world application of NFLs. In the following 
section, we elaborate on three key challenges that must be addressed to solve real-world 
safety verifcation problems for NFLs, along with proposed solutions to these challenges. 

1.1 Scale of NFL Verifcation Problems 

To solve practical safety verifcation problems for NFLs, a reachability tool must be able to 
efciently generate reachable sets over long time horizons while scaling well with respect to 
the system’s state dimension. This is challenging because calculating exact reachable sets is 
computationally expensive, and cheaper reachable set over-approximations (RSOAs) sufer 
from the wrapping efect [32], causing them to become excessively conservative over long time 
horizons. The conservativeness of RSOAs poses a challenge to safety verifcation because 
overly conservative RSOAs can indicate a violation of safety constraints even if the system is 
safe. To combat the wrapping efect, refnement techniques are typically employed to reduce 
the conservativeness of RSOAs, but they introduce additional computational challenges. 

Partitioning [16,20,44,63] accomplishes refnement by splitting up the initial state set and 
calculating reachable sets for each of the resulting subsets. This allows for tighter relaxations 
of the NN and thus less conservative RSOAs. While partitioning is an efective approach 
for some problems, splitting up the initial set is a strategy that scales poorly with the state 
dimension of the system being controlled. 

Another approach to refnement lies in symbolic reachability calculations [9]. Symbolic 
RSOA calculations generate bounds on states N > 1 time steps in the future, thus mitigating 
the wrapping efect. However, since an N -step calculation involves analyzing N closed-loop 
time steps, symbolic calculations are very difcult for long time horizons. Sidrane et al. [49] 
overcame this challenge by alternating between symbolic and one-step concrete calculations 
on a predefned schedule, but it was not clear how this schedule should be determined. Recent 
work [51] addresses the scheduling question by determining a hybrid-symbolic schedule given 
a specifed time budget, but does not consider how the resulting RSOAs interact with safety 
constraints on the NFL, and thus may not refne the RSOAs in a way that verifes safety. 

Thus, concrete and symbolic RSOA calculations each have their tradeofs: concrete cal-
culations are fast, but sufer from being overly conservative over multiple time steps whereas 
symbolic calculations are slower over long time horizons, but are much less conservative. 
Given these tradeofs, it is unknown how to efciently calculate RSOAs to verify if the state 
of a high-dimensional NFL stays in the safe region of the state space over a long time horizon. 
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1.2 Learning Verifably Safe Control Policies 

Even with a state-of-the-art refnement approach, policies that operate near the border of 
an unsafe region may still be very difcult to verify. Standard training methods fnd an 
optimal policy given cost function, but do not consider that they need to be verifed as 
safe. Training in this manner leads to policies that perform very well, but which may not 
be verifable, as shown in Fig. 1. The policy in Fig. 1 was trained using standard imitation 
learning (IL) using mean squared error loss with state-
action pairs generated by an MPC controller that 
drives the state from the black box to the origin. No-
tice that the simulated trajectories pass very close 
to the constraint x2 ≥ −1 (gray), which could in-
troduce a signifcant challenge during the verifcation 
process. Simultaneously, arbitrarily infating the con-
straint could lead to an overly conservative policy that 
performs worse than the original. 

To address this challenge, several recent works 
have investigated Verifcation-in-the-loop learning 
(VILL), but this adds an additional computational cost which must be reduced. Recent 
work [62] used VILL in a reinforcement learning context and started to address the chal-
lenge of reducing computational cost, but is still considerably slower than standard learning 
pipelines Alternatively, [60] uses reach-avoid properties with an approximate gradient de-
scent method, but does not enable other learning objectives and is thus overly restrictive. 
Another line of work [37, 56] imposes constraints on the learned policy, which can be used 
to ensure safety, but is limited in the number of convex constraints that can be applied and 
requires an iterative approach on the forward call of the NN [37] or cannot apply system-level 
constraints [56]. Thus, the problem of efciently incorporating verifcation in the training 
loop to create policies that are verifably safe with respect to general nonconvex constraints 
is still an open problem that must be addressed. 

1.3 

Figure 1: Standard IL policy operates very 
close to constraint. 

Verifying Complicated Autonomy Pipelines 

Real-world NFLs are rarely a simple NN controller giving an input to the system. NNs may be 
integrated at many points in a systems autonomy pipeline, including perception/estimation 
modules [42,66], planners [29,55], and low-level control [48]. Consider the NFLs with various 
combinations of learning-enabled and standard components shown in Fig. 2. 

Figure 2: NFLs with various combinations of learning-enabled and standard components. 
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While recent works have developed methods to verify systems with NN estimators and 
controllers [27, 41], the presence of an optimization-based planner in loop (a) introduces 
complexity that cannot be handled with existing methods. Moreover, while the only NN 
component in (b) is the planner, existing methods for verifcation of NFLs do not consider 
ways to incorporate standard components like SLAM-based localization or common control 
techniques, such as adaptive control. Since Fig. 2 is representative of common implementa-
tions of NFLs, there is a great need to develop methods capable of verifying their safety. 

2 Proposed Contributions 

2.1 Scalable Techniques for Safety Verifcation of NFLs 

In response to the problem outlined in Section 1.1, this thesis proposes the following contribu-
tions: 1) Constraint-Aware Refnement for Verifcation (CARV): a framework that explicitly 
uses the system’s constraints to guide the safety verifcation process for NFLs; 2) A refne-
ment algorithm that fnds a hybrid-symbolic schedule to enable efcient safety verifcation 
for NFLs while avoiding expensive RSOA calculations and still mitigating the wrapping ef-
fect; and 3) Experiments wherein CARV verifes safety for a problem where other approaches 
either fail or take more than 60× longer and require 40× more memory. 

The key insight of CARV is that refnement is only conducted as needed to efciently 
verify safety for a given problem. Moreover, by using symbolic calculations but setting a 
limit on the length of any given symbolic step, CARV scales well with both state dimension 
and time horizon. These advancements allow CARV to successfully and efciently verify 
safety for a 6D nonlinear quadrotor, shown in Fig. 3 as well as a 3D ground robot model and 
a 2D double integrator, as shown in Table 1. More details on the implementation of CARV 
can be found in [45]. 

Figure 3: CARV verifes safety for a 6D quadrotor. 

Table 1: CARV efciently verifes safety for each 
problem. 

Approach DI GR QD 
Time Verif Time Verif Time Verif 

part [16] 20.79 s Y 540.10 s Y — N 
symb [9] 29.42 s Y — N — N 
unif [49] 1.77 s N 9.71 s N 35.41 s N 

CARV (ours) 3.11 s Y 9.32 s Y 32.48 s Y 
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2.2 Efcient Verifcation-in-the-Loop Learning 

To address the problem posed by Section 1.2, this thesis will develop an approach that uses 
VILL to efciently learn control policies that are verifably safe with respect to nonconvex 
constraints. We will use insights from previous work on backward reachability [43, 46] for 
nonconvex problems and efcient verifcation [45] to help develop this approach. Moreover, 
we note that since post-learning verifcation is still necessary, the verifcation used in the 
learning process does not need to be sound. With this in mind, we have started development 
of a sim-guided reachability approach that does not provide formal guarantees, but provides 
approximate reachable sets with an order-of-magnitude speedup over similar sound methods. 
Fig. 4 shows an early implementation of this approach where the blue sets show the results of 
our pseudo reachabilty (blue), calculated in 0.33 s, compared with a symbolic reachability cal-
culation (green), calculated in 31.80 s. Though the pseudo reachability approach is not guar-
anteed to contain all trajectories, it is visually similar and was calculated in much less time. 

Figure 4: Symbolic (sound) reachability vs pseudo 
reachability. 

With further development of this work, 
this thesis proposes the following contribu-
tions: 1) Verifcation-in-the-loop learning 
with sim-guided pseudo reachability to cre-
ate verifably safe control policies. 2) In-
vestigation of sampling approaches to ef-
ciently approximate reachable sets for use 
in the pseudo reachability calculation. 3) 
Extension of concepts from [45] to minimize 
computational impact of verifcation on the 
learning process. 4) Integration of contribu-
tions (1-3) with backward reachability-based 
verifcation approach [46] to handle noncon-
vex constraints. 

2.3 Verifying NFLs with Complicated Autonomy Pipelines 

To address the problem posed in Section 1.3 this thesis will develop an approach to verify 
safety for NFLs with various combinations of learning-enabled and standard components in 
their feedback loops. We will take inspiration from [64], which, in the context of open-loop 
neural verifcation, extended standard neural verifcation tools to more general computational 
graphs to enable verifcation of a wide variety of neural architectures. Similarly, we will take 
inspiration from [26], which connected neural verifcation to the wide body of work on hybrid 
automota by transforming the network into a hybrid system. The goal of this work will be to 
combine guarantees from neural verifcation with those associated with standard approaches, 
e.g., guaranteed safe trajectory planning using optimization, to ensure safety for a system 
that uses each of these components. The main challenge will be combining these guarantees 
under a unifed framework that can be analyzed using and/or extending existing tools for 
safety verifcation. 
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3 Proposed Schedule 

Date Milestone 

May 2023 Passed doctoral feld evaluation. 

October 2024 First committee meeting. 

December 2024 
Acceptance of “Constraint-Aware Refnement for Safety 
Verifcation of Neural Feedback Loops” to L-CSS [45], detailed 
in Section 2.1. 

December 2024 Thesis proposal defense. 

Spring 2025 

Efcient verifcation-in-loop learning (to be submitted to 
CDC’25), detailed in Section 2.2 and initial work on journal 
extension incorporating sampling strategy and 
backward-reachability for nonconvex problems. 

Summer 2025 

Submission of journal extension of CDC’25 paper (to be 
submitted to TAC or OJ-CSYS). Ideation and initial work on 
verifcation of complicated autonomy pipelines, detailed in 
Section 2.3. 

Fall 2025 
Submission of verifcation for complicated autonomy pipelines 
(to be submitted to RA-L). Thesis writing and iteration. 

May 2026 Thesis defense. 

4 Work to Date 

Main publications: 

• Constraint-Aware Refnement for Safety Verifcation of Neural Feedback Loops [45] 
(accepted for publication in L-CSS) 

• Backward Reachability Analysis for Neural Feedback Loops: Techniques for Linear 
and Nonlinear Systems [46] (OJ-CSYS) 

• Backward Reachability Analysis for Neural Feedback Loops [43] (CDC ’22) 

Other publications: 

• Safe Autonomy for Uncrewed Surface Vehicles Using Adaptive Control and Reachabil-
ity Analysis [36] (submitted to TCST) 

• Online Data-Driven Safety Certifcation for Systems Subject to Unknown Distur-
bances [47] (ICRA ’24) 

• A Hybrid Partitioning Strategy for Backward Reachability Analysis of Neural Feedback 
Loops [44] (ACC ’23) 
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A Literature Review 

A.1 Safety Verifcation for Neural Feedback Loops 

Due to the increasing prevalence of NNs in the felds of controls and robotics, there has 
been a recent furry of publications concerned with providing statements about their safety. 
Motivated by work demonstrating the efectiveness of adversarial attacks [19, 31, 35], many 
tools have been developed to analyze NNs in isolation by predicting a set of possible out-
puts given perturbations to a nominal input [11, 13, 34, 58, 64, 65]. VNN-COMP [6, 7] has 
additionally spurned the development of these tools and has introduced a set of benchmark 
problems, several of which shift the focus to verifcation of NFLs. Along with more general 
efort within the NFL verifcation community, these problems have led to a class of tools 
capable of generating reachable sets for NFLs [14, 16, 25, 34, 58], which will be useful for 
this thesis and are the subject of further discussion in Appendix A.2. Other methods for 
safety verifcation of NFLs include statistical methods based on conformal prediction [33], 
theorem-proving tools [30], and direct falsifcation [50]. 

Additionally, safety can be ensured at run time with the application of a safety flter [22, 
59]. While not developed for NFLs in particular, safety flters correct unsafe control actions 
to drive a system to a safe invariant set. In contrast to the previously mentioned work on 
closed-loop reachability for NFLs, Hamilton-Jacobi (HJ) reachability can also be used to 
ensure the safety of an NFL by using the open-loop dynamics to create a safety flter [4,15]. 
While HJ reachability can be used to construct high-performing safety flters, they require 
solving a partial diferential equation using a grid of the state space, causing these methods 
to scale poorly with the system’s state dimension [4,38] or involve learning additional models 
for the purpose of reachable set calculation [5,21]. Similarly, safety flters can be constructed 
using control barrier functions (CBFs) [3, 10]. Often, CBFs are hand-crafted for a specifc 
system and safety constraint [2, 10], though this takes signifcant expertise and can be very 
difcult for complex systems. Recent work has shown promising results enabled by learning 
CBFs [10, 52], but it can be challenging to combat conservativeness and ensure validity of 
the learned safety flter, especially when input constraints are involved. 

A.2 NFL Reachability and Refnement Techniques 

Reachability analysis predicts the future states of a given system given uncertainty about the 
initial state and is the focus of many recent works [16,17,23,25,34,49]. A big challenge many 
of these works face is the issue of conservativeness. While some approaches are capable of 
exact reachability analysis [34,58], these are fairly limited in the range of NFLs they can be 
applied to, e.g., linear systems with ReLU NN controllers, and are computationally heavy. As 
an alternative to exact reachability calculations, there is a wide body of work on calculating 
Reachable Set Over Approximations (RSOAs) [9,16,20,25,49] that provide outer bounds on 
the exact reachable sets. Diferent lines of research have branched this idea out in a variety 
of exciting directions, including verifcation of perception-based controllers [18,27,41], multi-
agent systems [12], and verifcation of nonconvex problems with backward reachability [43, 
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46]. Typically, these reachability approaches calculate RSOAs at discrete intervals and use 
the RSOA at time t to calculate the RSOA at time t + 1. We refer to this approach as 
concrete RSOA calculation, which can be fast, but also accrues conservativeness due to the 
wrapping efect [32, 39]. 

There are several ways to combat the wrapping efect. First, having very tight RSOAs 
limits the area beyond the true reachable set, so the wrapping efect takes more time steps to 
manifest itself. Rich set representations, such as star sets [34, 57], can be used to help with 
this, but are still victim to approximation error associated with NN analysis. Alternatively, 
even simple set representations, such as hyper-rectangles, can be used efectively in spite of 
the wrapping efect via the use of refnement. Partitioning [16] splits up the initial state 
set and calculates reachable sets for each of the resulting subsets, thus providing tighter 
relaxations of the NN and an artifcially enriched set representation (multiple small sets 
vs. one large one) leading to less conservative RSOAs. While guided partitioning strategies 
exist [20,44,63], these approaches ultimately sufer from the curse of dimensionality and scale 
poorly with the state dimension of the underlying system. Symbolic reachability [9] is another 
refnement approach, which can be used alone or in conjunction with partitioning. Introduced 
in [50], this approach calculates multiple time steps forward at once, thus allowing the RSOA 
at time t + 1 to be calculated independently from the set at time t. However, symbolic 
calculations scale poorly with respect to the time horizon because each new time step adds 
more complexity to the verifcation problem. To address this issue, [49] proposes a hybrid-
symbolic approach, alternating between symbolic andconcrete calculations on a predefned 
schedule. Recent work [51] extended this idea by fnding a hybrid-symbolic schedule given a 
specifed time budget. 

A.3 Safe Learning 

Given the potential of learned approaches for robotics applications, there has been a strong 
push to develop learning techniques that enable safe system behavior. Safe reinforcement 
learning (RL) [1, 53] has become a very popular subject of investigation, and while these 
approaches do reduce failure rates, they do not come with safety guarantees and still fail 
occasionally. To address this issue in the context of RL, [40, 61] use forward invariance 
and [28] uses a safety fltering approach, but these are either used in post-processing or at 
runtime. In the imitation learning framework (IL), work such as [54] seeks to imitate a 
tube MPC policy that is robust to uncertain disturbances, but again does not come with 
any formal guarantees. To incorporate notions of safety into the learning process, [62] used 
reachability calculations and a gradient approximation to create a learning pipeline based 
on reach-avoid properties, but is limited to a specifc system and does not allow for other 
learning objectives. Alternatively, [62] is more generalizable since it uses some of the tools 
discussed in Appendix A.2, but sufers from the added computational cost. 

Constrained learning is a promising direction of research that seeks to ensure safety by 
limiting the output of a NN. Works such as [24, 56] developed layers in a NN architecture 
that project the outputs onto a constraint space, thus enabling constrained NN outputs, 
but these works do not consider input-dependant constraints, so are not useful for verifying 
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safety for neural controllers. Recent work [8,37] do account for input-dependent constraints, 
but are limited in the number of constraints that can be applied and have no support for 
non-convex problems. 
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