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Abstract

Neural networks (NNs) are becoming increasingly popular in the design of control pipelines
for autonomous systems. However, due to the unpredictable nature of NNs, systems that
have NNs in their control pipelines, i.e., neural feedback loops (NFLs), need safety assurances
before they can be applied in safety-critical situations. To address this need, this thesis inves-
tigates reachability for safety verification of practical NFL verification problems. In practice,
NFLs often have sophisticated autonomy pipelines consisting of estimation, planning, and
control modules with highly nonlinear closed-loop behavior that needs to be verified over
long time horizons. These factors pose challenges to existing techniques, which calculate
reachable set over-approximations (RSOAs) as a tractable alternative to exact reachable
sets. While relatively efficient to calculate, RSOAs can be prohibitively conservative given
nonlinear dynamics and NN control policies. Moreover, existing techniques consider simple
control pipelines, typically consisting of just an NN controller with full state feedback. To
address these issues, this thesis proposes three contributions: First, we propose a method to
reduce conservativeness of RSOAs for NFLs in a way that scales well with both the state
dimension of the system and the time horizon of the verification problem. Second, we pro-
pose methods to incorporate reachability into the NN controller’s learning pipeline to create
verifiable-by-design policies that can be more easily verified as safe. Finally, we investigate
ways to verify safety for NFLs that consist of complicated autonomy pipelines consisting
of estimation, planning, and control modules, any combination of which may be NN-based.
The results of this thesis will greatly broaden the types of NFL verification problems that
can be solved, thus enabling the safe application of NFLs for real-world autonomy.
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This abstract briefly describes a broad motivation for the proposed research, but then promptly gets into the specific challenges that current research does not address (complicated autonomy pipelines, highly nonlinear dynamics, and long time horizons). It then proposes three different contributions, which address the highlighted gaps.


1 Problem Statement

This thesis investigates the problem of safety verification for autonomous systems that have
neural networks (NNs) embedded in feedback loops within their autonomy pipelines. These
systems are hereafter referred to as neural feedback loops (NFLs) and pose specific chal-
lenges with respect to safety verification due to the complicated and nonlinear nature of
the underlying NNs. Interval-based reachability analysis provides a highly generalizeable
framework for safety verification of NFLs, but needs further advancement to address ver-
ification problems representative of the real-world application of NFLs. In the following
section, we elaborate on three key challenges that must be addressed to solve real-world
safety verification problems for NFLs, along with proposed solutions to these challenges.

1.1 Scale of NFL Verification Problems

To solve practical safety verification problems for NFLs, a reachability tool must be able to
efficiently generate reachable sets over long time horizons while scaling well with respect to
the system’s state dimension. This is challenging because calculating exact reachable sets is
computationally expensive, and cheaper reachable set over-approximations (RSOAs) suffer
from the wrapping effect [32], causing them to become excessively conservative over long time
horizons. The conservativeness of RSOAs poses a challenge to safety verification because
overly conservative RSOAs can indicate a violation of safety constraints even if the system is
safe. To combat the wrapping effect, refinement techniques are typically employed to reduce
the conservativeness of RSOAs, but they introduce additional computational challenges.

Partitioning [16,20,44,63] accomplishes refinement by splitting up the initial state set and
calculating reachable sets for each of the resulting subsets. This allows for tighter relaxations
of the NN and thus less conservative RSOAs. While partitioning is an effective approach
for some problems, splitting up the initial set is a strategy that scales poorly with the state
dimension of the system being controlled.

Another approach to refinement lies in symbolic reachability calculations [9]. Symbolic
RSOA calculations generate bounds on states N > 1 time steps in the future, thus mitigating
the wrapping effect. However, since an N-step calculation involves analyzing N closed-loop
time steps, symbolic calculations are very difficult for long time horizons. Sidrane et al. [49]
overcame this challenge by alternating between symbolic and one-step concrete calculations
on a predefined schedule, but it was not clear how this schedule should be determined. Recent
work [51] addresses the scheduling question by determining a hybrid-symbolic schedule given
a specified time budget, but does not consider how the resulting RSOAs interact with safety
constraints on the NFL, and thus may not refine the RSOAs in a way that verifies safety.

Thus, concrete and symbolic RSOA calculations each have their tradeoffs: concrete cal-
culations are fast, but suffer from being overly conservative over multiple time steps whereas
symbolic calculations are slower over long time horizons, but are much less conservative.
Given these tradeoffs, it is unknown how to efficiently calculate RSOAs to verify if the state
of a high-dimensional NFL stays in the safe region of the state space over a long time horizon.
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1.2 Learning Verifiably Safe Control Policies

Even with a state-of-the-art refinement approach, policies that operate near the border of
an unsafe region may still be very difficult to verify. Standard training methods find an
optimal policy given cost function, but do not consider that they need to be verified as
safe. Training in this manner leads to policies that perform very well, but which may not
be wverifiable, as shown in Fig. 1. The policy in Fig. 1 was trained using standard imitation
learning (IL) using mean squared error loss with state-
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Figure 1: Standard IL policy operates very

To address this challenge, several recent works ;
close to constraint.

have investigated Verification-in-the-loop learning

(VILL), but this adds an additional computational cost which must be reduced. Recent
work [62] used VILL in a reinforcement learning context and started to address the chal-
lenge of reducing computational cost, but is still considerably slower than standard learning
pipelines Alternatively, [60] uses reach-avoid properties with an approximate gradient de-
scent method, but does not enable other learning objectives and is thus overly restrictive.
Another line of work [37,56] imposes constraints on the learned policy, which can be used
to ensure safety, but is limited in the number of convex constraints that can be applied and
requires an iterative approach on the forward call of the NN [37] or cannot apply system-level
constraints [56]. Thus, the problem of efficiently incorporating verification in the training
loop to create policies that are verifiably safe with respect to general nonconvex constraints
is still an open problem that must be addressed.

1.3 Verifying Complicated Autonomy Pipelines

Real-world NFLs are rarely a simple NN controller giving an input to the system. NNs may be
integrated at many points in a systems autonomy pipeline, including perception/estimation
modules [42,66], planners [29,55], and low-level control [48]. Consider the NFLs with various
combinations of learning-enabled and standard components shown in Fig. 2.

Estimator Planner Low-Level Control Estimator Planner Low-Level Control

(NN) ™ (Optimization) [ (NN) > Dynamics _‘ ’_’ (sLam) [ (NN) g (Adaptive) > Dynamics _‘

(@) (b)

Figure 2: NFLs with various combinations of learning-enabled and standard components.



While recent works have developed methods to verify systems with NN estimators and
controllers [27,41], the presence of an optimization-based planner in loop (a) introduces
complexity that cannot be handled with existing methods. Moreover, while the only NN
component in (b) is the planner, existing methods for verification of NFLs do not consider
ways to incorporate standard components like SLAM-based localization or common control
techniques, such as adaptive control. Since Fig. 2 is representative of common implementa-
tions of NFLs, there is a great need to develop methods capable of verifying their safety.

2 Proposed Contributions

2.1 Scalable Techniques for Safety Verification of NFLs

In response to the problem outlined in Section 1.1, this thesis proposes the following contribu-
tions: 1) Constraint-Aware Refinement for Verification (CARV): a framework that explicitly
uses the system’s constraints to guide the safety verification process for NFLs; 2) A refine-
ment algorithm that finds a hybrid-symbolic schedule to enable efficient safety verification
for NFLs while avoiding expensive RSOA calculations and still mitigating the wrapping ef-
fect; and 3) Experiments wherein CARV verifies safety for a problem where other approaches
either fail or take more than 60x longer and require 40X more memory.

The key insight of CARV is that refinement is only conducted as needed to efficiently
verify safety for a given problem. Moreover, by using symbolic calculations but setting a
limit on the length of any given symbolic step, CARV scales well with both state dimension
and time horizon. These advancements allow CARV to successfully and efficiently verify
safety for a 6D nonlinear quadrotor, shown in Fig. 3 as well as a 3D ground robot model and
a 2D double integrator, as shown in Table 1. More details on the implementation of CARV
can be found in [45].
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Figure 3: CARV verifies safety for a 6D quadrotor.
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2.2 Efficient Verification-in-the-Loop Learning

To address the problem posed by Section 1.2, this thesis will develop an approach that uses
VILL to efficiently learn control policies that are verifiably safe with respect to nonconvex
constraints. We will use insights from previous work on backward reachability [43,46] for
nonconvex problems and efficient verification [45] to help develop this approach. Moreover,
we note that since post-learning verification is still necessary, the verification used in the
learning process does not need to be sound. With this in mind, we have started development
of a sim-guided reachability approach that does not provide formal guarantees, but provides
approximate reachable sets with an order-of-magnitude speedup over similar sound methods.
Fig. 4 shows an early implementation of this approach where the blue sets show the results of
our pseudo reachabilty (blue), calculated in 0.33 s, compared with a symbolic reachability cal-
culation (green), calculated in 31.80s. Though the pseudo reachability approach is not guar-
anteed to contain all trajectories, it is visually similar and was calculated in much less time.

0.41 [ Pseudo Reachability With further development of this work,
0.2 [ Symbolic Reachability T this thesis proposes the following contribu-
Fi tions: 1) Verification-in-the-loop learning
with sim-guided pseudo reachability to cre-
ate verifiably safe control policies. 2) In-
vestigation of sampling approaches to effi-
5 S iE “’ ciently approximate reachable sets for use
iimem in the pseudo reachability calculation. 3)
N Extension of concepts from [45] to minimize
05 00 05 10 15 20 25 30 computational impact of verification on the

X learning process. 4) Integration of contribu-
tions (1-3) with backward reachability-based
verification approach [46] to handle noncon-
vex constraints.
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Figure 4: Symbolic (sound) reachability vs pseudo
reachability.

2.3 Verifying NFLs with Complicated Autonomy Pipelines

To address the problem posed in Section 1.3 this thesis will develop an approach to verify
safety for NFLs with various combinations of learning-enabled and standard components in
their feedback loops. We will take inspiration from [64], which, in the context of open-loop
neural verification, extended standard neural verification tools to more general computational
graphs to enable verification of a wide variety of neural architectures. Similarly, we will take
inspiration from [26], which connected neural verification to the wide body of work on hybrid
automota by transforming the network into a hybrid system. The goal of this work will be to
combine guarantees from neural verification with those associated with standard approaches,
e.g., guaranteed safe trajectory planning using optimization, to ensure safety for a system
that uses each of these components. The main challenge will be combining these guarantees
under a unified framework that can be analyzed using and/or extending existing tools for
safety verification.
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3 Proposed Schedule

Date Milestone
May 2023 Passed doctoral field evaluation.
October 2024 First committee meeting.

Acceptance of “Constraint-Aware Refinement for Safety

December 2024 Verification of Neural Feedback Loops” to L-CSS [45], detailed

in Section 2.1.

December 2024 Thesis proposal defense.

Efficient verification-in-loop learning (to be submitted to
CDC(C’25), detailed in Section 2.2 and initial work on journal
extension incorporating sampling strategy and
backward-reachability for nonconvex problems.

Spring 2025

Submission of journal extension of CDC’25 paper (to be
submitted to TAC or OJ-CSYS). Ideation and initial work on
verification of complicated autonomy pipelines, detailed in
Section 2.3.

Summer 2025

Submission of verification for complicated autonomy pipelines

Fall 2025 (to be submitted to RA-L). Thesis writing and iteration.

May 2026 Thesis defense.

4 Work to Date

Main publications:

e Constraint-Aware Refinement for Safety Verification of Neural Feedback Loops [45]
(accepted for publication in L-CSS)

e Backward Reachability Analysis for Neural Feedback Loops: Techniques for Linear
and Nonlinear Systems [46] (OJ-CSYS)

e Backward Reachability Analysis for Neural Feedback Loops [43] (CDC ’22)
Other publications:

e Safe Autonomy for Uncrewed Surface Vehicles Using Adaptive Control and Reachabil-
ity Analysis [36] (submitted to TCST)

e Online Data-Driven Safety Certification for Systems Subject to Unknown Distur-
bances [47] (ICRA '24)

e A Hybrid Partitioning Strategy for Backward Reachability Analysis of Neural Feedback
Loops [44] (ACC "23)
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A Literature Review

A.1 Safety Verification for Neural Feedback Loops

Due to the increasing prevalence of NNs in the fields of controls and robotics, there has
been a recent flurry of publications concerned with providing statements about their safety.
Motivated by work demonstrating the effectiveness of adversarial attacks [19,31, 35], many
tools have been developed to analyze NNs in isolation by predicting a set of possible out-
puts given perturbations to a nominal input [11, 13,34, 58, 64,65]. VNN-COMP [6, 7] has
additionally spurned the development of these tools and has introduced a set of benchmark
problems, several of which shift the focus to verification of NFLs. Along with more general
effort within the NFL verification community, these problems have led to a class of tools
capable of generating reachable sets for NFLs [14, 16, 25, 34, 58], which will be useful for
this thesis and are the subject of further discussion in Appendix A.2. Other methods for
safety verification of NFLs include statistical methods based on conformal prediction [33],
theorem-proving tools [30], and direct falsification [50].

Additionally, safety can be ensured at run time with the application of a safety filter [22,
59]. While not developed for NFLs in particular, safety filters correct unsafe control actions
to drive a system to a safe invariant set. In contrast to the previously mentioned work on
closed-loop reachability for NFLs, Hamilton-Jacobi (HJ) reachability can also be used to
ensure the safety of an NFL by using the open-loop dynamics to create a safety filter [4,15].
While HJ reachability can be used to construct high-performing safety filters, they require
solving a partial differential equation using a grid of the state space, causing these methods
to scale poorly with the system’s state dimension [4,38] or involve learning additional models
for the purpose of reachable set calculation [5,21]. Similarly, safety filters can be constructed
using control barrier functions (CBFs) [3,10]. Often, CBFs are hand-crafted for a specific
system and safety constraint [2,10], though this takes significant expertise and can be very
difficult for complex systems. Recent work has shown promising results enabled by learning
CBFs [10,52], but it can be challenging to combat conservativeness and ensure validity of
the learned safety filter, especially when input constraints are involved.

A.2 NFL Reachability and Refinement Techniques

Reachability analysis predicts the future states of a given system given uncertainty about the
initial state and is the focus of many recent works [16,17,23,25,34,49]. A big challenge many
of these works face is the issue of conservativeness. While some approaches are capable of
exact reachability analysis [34,58], these are fairly limited in the range of NFLs they can be
applied to, e.g., linear systems with ReLLU NN controllers, and are computationally heavy. As
an alternative to exact reachability calculations, there is a wide body of work on calculating
Reachable Set Over Approximations (RSOAs) [9,16,20,25,49] that provide outer bounds on
the exact reachable sets. Different lines of research have branched this idea out in a variety
of exciting directions, including verification of perception-based controllers [18,27,41], multi-
agent systems [12], and verification of nonconvex problems with backward reachability [43,
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46]. Typically, these reachability approaches calculate RSOAs at discrete intervals and use
the RSOA at time t to calculate the RSOA at time ¢ + 1. We refer to this approach as
concrete RSOA calculation, which can be fast, but also accrues conservativeness due to the
wrapping effect [32,39].

There are several ways to combat the wrapping effect. First, having very tight RSOAs
limits the area beyond the true reachable set, so the wrapping effect takes more time steps to
manifest itself. Rich set representations, such as star sets [34,57], can be used to help with
this, but are still victim to approximation error associated with NN analysis. Alternatively,
even simple set representations, such as hyper-rectangles, can be used effectively in spite of
the wrapping effect via the use of refinement. Partitioning [16] splits up the initial state
set and calculates reachable sets for each of the resulting subsets, thus providing tighter
relaxations of the NN and an artificially enriched set representation (multiple small sets
vs. one large one) leading to less conservative RSOAs. While guided partitioning strategies
exist [20,44,63], these approaches ultimately suffer from the curse of dimensionality and scale
poorly with the state dimension of the underlying system. Symbolic reachability [9] is another
refinement approach, which can be used alone or in conjunction with partitioning. Introduced
in [50], this approach calculates multiple time steps forward at once, thus allowing the RSOA
at time ¢ + 1 to be calculated independently from the set at time t. However, symbolic
calculations scale poorly with respect to the time horizon because each new time step adds
more complexity to the verification problem. To address this issue, [49] proposes a hybrid-
symbolic approach, alternating between symbolic andconcrete calculations on a predefined
schedule. Recent work [51] extended this idea by finding a hybrid-symbolic schedule given a
specified time budget.

A.3 Safe Learning

Given the potential of learned approaches for robotics applications, there has been a strong
push to develop learning techniques that enable safe system behavior. Safe reinforcement
learning (RL) [1, 53] has become a very popular subject of investigation, and while these
approaches do reduce failure rates, they do not come with safety guarantees and still fail
occasionally. To address this issue in the context of RL, [40,61] use forward invariance
and [28] uses a safety filtering approach, but these are either used in post-processing or at
runtime. In the imitation learning framework (IL), work such as [54] seeks to imitate a
tube MPC policy that is robust to uncertain disturbances, but again does not come with
any formal guarantees. To incorporate notions of safety into the learning process, [62] used
reachability calculations and a gradient approximation to create a learning pipeline based
on reach-avoid properties, but is limited to a specific system and does not allow for other
learning objectives. Alternatively, [62] is more generalizable since it uses some of the tools
discussed in Appendix A.2, but suffers from the added computational cost.

Constrained learning is a promising direction of research that seeks to ensure safety by
limiting the output of a NN. Works such as [24, 56] developed layers in a NN architecture
that project the outputs onto a constraint space, thus enabling constrained NN outputs,
but these works do not consider input-dependant constraints, so are not useful for verifying
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safety for neural controllers. Recent work [8,37] do account for input-dependent constraints,
but are limited in the number of constraints that can be applied and have no support for
non-convex problems.
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