	Pathogenic microbes continually evolve to acquire resistance to antibiotic treatments, creating an	
	enormous global health crisis. The consequences are extreme – a recent report projected the human	Approach: With guidance from Dr. Approach, I will leverage the resources of the
	cost of antimicrobial resistance to be 300 million cumulative premature deaths by 2050 with a loss	and Laboratories and the Center for
	of up to \$100 trillion to the growing economy ¹ . Despite the prevalence of antibiotic resistance	at Additionally, I am currently advising three
	rising rapidly, the rate of development of novel antibiotics substantially lags behind the rate at	undergraduate students to work with me on Aim 1 and Aim 2 of this project.
strong intellectual merit	which pathogens evolve resistance to them ² . A strategy to maintain the efficacy of existing and	Aim 1: Evaluate different antibiotic regimens with bacteria using microfluidics. To
AND broader impacts <	future antibiotics is to constrain the paths towards resistance, which requires detailed knowledge	circumvent time-consuming established techniques for antibiotic susceptibility testing, I have
	of genetics, ecological conditions, evolutionary landscapes, and mechanisms of drug actions. I	started to fabricate a multiplexed microfluidics device with support from the fabricate of (Fig.
right out of the gate!	propose to create a high-throughput system to evaluate sensitivity of microbes to various antibiotic	1B) ⁴ . This enables simultaneous monitoring of the effects of multiple antibiotics at different
	regimens, engineer a novel biocompatible device for implementation of large-dose antibiotic	concentrations, as well as their combination and cycling regimens. Several bacterial strains will be
	delivery, and construct a multi-compartment mathematical model to explore the temporal	engineered to express fluorescent proteins to elucidate whether inherent characteristics of the
	population dynamics of bacteria during treatment with antibiotics.	pathogen leads to different viability outcomes with various treatment regimens. This approach
explicit call-out to IM	Intellectual Merit: Bacteria resist antibiotics by modifying their cell wall proteins or target of the	solely captures population effects without information of chemical compositions and structure of
helps the panelists	drug, inactivating the antibiotic, or overexpressing their efflux pump proteins to expel the	biological molecules. To overcome this limitation, I will utilize Raman spectroscopy and measure
helps the panelists	antibiotic and reduce its efficacy ² . Engineering strategies to delay antibiotic resistance and	phenotypic heterogeneity at a single-cell level in genetically uniform microbial populations ⁵ .
	eventually overcome it are critical now. Currently, researchers are attempting to do this by	Aim 2: Develop biomaterials for gastric resident delivery device with a holding capacity of
	studying drug interactions, with regards to synergy and antagonism to optimize killing of microbes.	50 grams of drug. In parallel to work outlined in Aim 1, I will explore various designs for large-
sets out a knowledge/	These combination treatments typically lead to increased dosage and toxicity. Furthermore,	dose delivery devices that can hold up to one month's worth of drugs (around 50 grams for
5	progress towards overcoming antibiotic resistance has been encumbered by the lack of a high-	tuberculosis) to minimize resistance due to nonadherence of treatment regimens. Design criteria
engineering gap	throughput system to study antibiotic susceptibility and knowledge of compatible biomaterials for	include the following: the device should be made of biocompatible materials (available in the
	large-dose antibiotic delivery.), retained in the stomach, deployed orally, able to control release rates of drugs, and
	To approach this problem, I will understand how collateral sensitivity - whereby an organism	cycle drugs. In vitro device testing involves measuring drug release rates in simulated gastric fluid
	resistant to one drug displays increasing sensitivity to a second drug - affects clearance of a	and ensuring robust mechanical properties over one month (using the Instron machine
	bacterial population relative to treatment either with one drug or a combination of drugs	Aim 3: Construct a mathematical model to validate interactions of bacteria and antibiotics.
	simultaneously (Fig. 1A) (Thypothesize that collateral sensitivity will minimize the evolution of	With results from the high-throughput system in Aim 1, I will provide a mathematical basis for
states a hypothesis,	resistance and increase the rate of clearance of bacterial pathogens. In my interdisciplinary project,	understanding and predicting the kinetics of switching of susceptible populations to drug-resistant
restates goals	which integrates microbiology, mechanical engineering, materials science, and mathematical	populations when treated with antibiotic regimens (Fig. 1C). In particular, the model can inform
	biology, as part of I intend to create a microfluidics system to study	the optimal period of cycling drugs for collateral sensitivity and determine when this approach is
	the effectiveness of collateral sensitivity, develop a large-scale drug delivery device to be	a better treatment relative to combination or monotherapy. To account for rare events of resistance,
	tested in vitro, and provide a mathematical basis for understanding the dynamics of bacterial	I will implement a stochastic model and incorporate fitness costs of resistance.
	treatment and resistance.	Broader Impacts: A high-throughput platform for rapid antibiotic susceptibility testing combined
<i>c c</i>		with a predictive mathematical model represents a significant step towards our understanding of
figure is information-	Nutrients	treatments to quickly eradicate bacterial infections while minimizing resistance to current and
dense, which is good,		future drugs. I will partner with industries through Program and translate
since space is at a pre-		results of my research to the clinic for developing large-dose antibiotic delivery devices. Moreover,
		to inspire underprivileged middle- and high-school girls in the second second to pursue higher education and expose them to a variety of research topics. I am organizing bioengineering
mium in this piece!		workshops through the College Connection program in my capacity as a Society of Women
		Engineers graduate student leader. These will incorporate interdisciplinary techniques used in my
figure might have	Drug A-resistant strain Drug B-resistant strain	project, such as microfluidics, biomaterials, and mathematical modeling. My research can be used
benefited from some		as a platform for a general and systematic approach for understanding the interactions of antibiotics
		and microbes in addition to discovering novel materials for large-dose devices to overcome
simplification (what are	Fig. 1: (A) Collateral sensitivity includes cycling of two drugs, A and B, to result in increased sensitivity of the	antibiotic resistance worldwide.
the dotted lines?).	bacteria to the subsequent drug3. (B) The multiplexed microfluidics approach involves pumping drugs A and B	<u>References:</u> 1. O'Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations (2014). 2.
overall, document could	with Raman spectroscopy as a readout for different regimens being tested simultaneously. (C) The microfluidics	Dantas, G. & Sommer, M. O. A. Am. Sci. 102 , 42–51 (2014). 3. Imamovic, L. & Sommer, M. O. A. Sci. Transl. Med.
	experiments can inform kinetics of a population-based mathematical model with bacteria that are susceptible to	5 , 204ra132 (2013). 4 . Mohan, R., et al. <i>Biosens Bioelectron</i> 49 , 118-25 (2013). 5 . Hermelink, A., et al. <i>Analyst</i> 134 ,
use more whitespace	both drugs, <i>i.e.</i> wild-type (WT), resistant to drug A, resistant to drug B, or resistant to both drug A and drug B.	All rights to original document reserved by the authors.

explicit references to project resources

note that the "methods" are much broader than what you read in a paper or lab report!

note that "how it's done" is only half of the document! The rest is intro, background, IM, BI

explicit BI title

BI is a mix of global impact and local impact