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Abstract Accurately characterizing evapotranspiration is critical when predicting the response of the
hydrologic cycle to climate change. Although Earth system models estimate similar magnitudes of global
evapotranspiration, the magnitude of each contributing source varies considerably between models due to
the lack of evapotranspiration partitioning data. Here we develop an observation-based method to partition
evapotranspiration into soil evaporation and transpiration using meteorological data and satellite soil
moisture retrievals. We apply the methodology at 1,614 weather stations across the continental United States
during the summers of 2015 and 2016. We evaluate the method using vegetation indices inferred from
satellites, finding strong spatial correlations between modeled transpiration and solar-induced fluorescence
(r2 = 0.87), and modeled vegetation fraction and leaf area index (r2 = 0.70). Since the sensitivity of
evapotranspiration to environmental factors depends on the contribution of each source component,
understanding the partitioning of evapotranspiration is increasingly important with climate change.

Plain Language Summary Water moves from the land surface to the overlying atmosphere by
evaporation. The two main sources of evaporation include (1) evaporation from soils and (2) evaporation
from pores on plants, called transpiration. Although methods exist to measure total evaporation over an
ecosystem, it is challenging to observe soil evaporation and transpiration separately over an ecosystem.
Consequently, the amount of estimated soil evaporation and transpiration varies considerably across models.
In this study, we develop an observation-based method to estimate the fraction of water moved from the
land to the atmosphere by plants, or the fraction of total evaporation that comes from transpiration. The
method primarily relies on weather station data and soil moisture estimates from a recently launched
satellite. We apply the method across the continental United States during the summers of 2015 and 2016
and evaluate it using observations of plants inferred from other satellites. Looking toward the future, it is
important to estimate transpiration and soil evaporation correctly because they respond differently to
changes in climate.

1. Introduction

Evapotranspiration (ET) represents the total movement of water from the land surface to the atmosphere via
transpiration, soil evaporation, and canopy evaporation. While modern Earth system models generally agree
on themagnitude of total ET, themagnitude of each source component differs substantially betweenmodels
(e.g., Kumar et al., 2018; Lawrence et al., 2007; Wei et al., 2017). For example, in the Coupled Model
Intercomparison Project 5 simulations, the percent of global ET partitioned to transpiration (T/ET) varies from
22% to 58% (Wei et al., 2017). Across land surface models, isotope analyses, and remote sensing-based pro-
ducts, estimates of global T/ET span from approximately 25% to 85% (see Figure 4 in Wei et al., 2017). This
large uncertainty in global T/ET is predominantly due to a lack of transpiration and soil evaporation observa-
tions at relevant spatial and temporal scales for model formulation, calibration, and validation.

At smaller scales, researchers have gainedmuch insight into the controls of soil evaporation and transpiration
by measuring and modeling each flux separately (Kool et al., 2014). Soil evaporation has been measured and
modeled for decades (e.g., Black et al., 1969; Richards et al., 1956; Ritchie, 1972), and various parameteriza-
tions relating bare soil evaporation to soil moisture (SM) have been proposed (Mahfouf & Noilhan, 1991).
Additionally, leaf level stomatal controls on transpiration have been extensively explored (see review by
Damour et al., 2010), and the issues of scaling from leaf to region have been thoroughly discussed,
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particularly in regard to the micrometeorological feedbacks present at larger spatial scales (Jarvis &
McNaughton, 1986; McNaughton & Jarvis, 1991; McNaughton & Spriggs, 1986). Generally, the underlying pro-
cesses governing soil evaporation and transpiration at smaller scales are spatially upscaled to serve as the
basis of ET models within Earth system models. This scaling requires numerous, soil- and vegetation-specific
effective parameters, which, again, cannot be sufficiently calibrated and validated with direct observations
when implemented in Earth system models.

Measurements from eddy covariance towers have been widely utilized to characterize ET partitioning at eco-
system scales. For example, to better constrain T/ET researchers have leveraged observations from multiple
towers within and above the canopy (e.g., Baldocchi et al., 1997; Moore et al., 1996), compared ET and SM
dynamics from coexisting sites with contrasting vegetation types (e.g., Baldocchi et al., 2004), coupled mea-
surements of carbon and water fluxes (Scanlon & Kustas, 2010; Scanlon & Sahu, 2008; Scott & Biederman,
2017; Zhou et al., 2016), measured sap flow (e.g., Oishi et al., 2010; Wilson et al., 2001) or stable isotopes
(e.g., Yepez et al., 2003) in conjunction with water fluxes, and quantified the degree to which the canopy is
coupled to atmosphere with respect to seasonality (e.g., Wilson et al., 2000). Although analyses of eddy cov-
ariance measurements have revealed important phenomenon governing the transport of water from the
land surface to the atmosphere, synthesizing these observations to inform Earth system models has largely
been hampered by their mismatch in temporal scales, as processes governing soil evaporation and transpira-
tion vary diurnally (Wang et al., 2010) and seasonally (Wang et al., 2014), and such studies have limited per-
iods of record.

In this study, we aim to develop an observation-based approach to partition ET into soil evaporation and tran-
spiration that can be applied across large spatial scales. Rather than scaling the physical processes governing
soil evaporation and transpiration (as common in land surface models), we build a statistical approach to
decompose ET into its transpiration and soil evaporation components at common weather stations. In the
statistical approach, we utilize meteorological observations from the weather stations, SM observations from
the Soil Moisture Active Passive (SMAP) satellite (Entekhabi et al., 2010), and a recently developed method to
estimate ET at each weather station, called the Evapotranspiration from Relative Humidity at Equilibrium
(ETRHEQ) method (Rigden & Salvucci, 2015, 2017; Salvucci & Gentine, 2013).

2. Methods
2.1. Estimating ET With ETRHEQ Method

Daily ET is estimated using the ETRHEQmethod (Rigden & Salvucci, 2015, 2017; Salvucci & Gentine, 2013). The
ETRHEQ method is structured as “big-leaf” model and uses a daily effective surface conductance to water
vapor transport (Csurf) to estimate ET. Unlike land surface models, which estimate conductances and ET via
surface parameterizations, the ETRHEQ method utilizes an emergent relation between the land surface and
the diurnal cycle of relative humidity to determine daily Csurf, and thus ET. These Csurf estimates serve as
the foundation of this study, as they enable us to estimate transpiration and soil evaporation without needing
to prescribe surface parameterizations (as described in section 2.3).

To estimate Csurf, the ETRHEQ method requires hourly meteorological data collected at weather stations
including temperature, humidity, wind speed, and pressure, as well as solar radiation. The only surface para-
meters required by the ETRHEQ method are an estimate of vegetation height to characterize roughness
lengths (Rigden & Salvucci, 2017), an estimate of emissivity (assumed constant at 0.98), and a single estimate
of soil thermal inertia to calculate ground heat flux (calibrated with eddy covariance data, 1,300 Jm!2 s!1/

2 K!1; Rigden & Salvucci, 2017). No additional knowledge of the surface is required; thus, inputs do not
include estimates of SM, leaf area index (LAI), or vegetation fraction. The ETRHEQ method agrees well with
measurements at over 60 eddy covariance sites—spanning a diverse range of plant functional types and cli-
mates (Rigden & Salvucci, 2017)—and watershed-scale estimates of ET across the continental United States
(Rigden & Salvucci, 2015). Since the ETRHEQ method has primarily been evaluated with respect to surface
fluxes, we directly evaluate the ETRHEQmethod’s ability to estimate daily Csurf inferred from eddy covariance
data (following similar methods as Rigden & Li, 2017) at 48 towers across the United States (Table S1 in the
supporting information), finding good performance across sites (Figure S1). For clarity, we refer to the Csurf
estimates from the ETRHEQ method as “Csurf, EQ”.
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2.2. Data
2.2.1. ETRHEQ Inputs
Hourly temperature, humidity, wind speed, and pressure are from the National Oceanic and
Atmospheric Administration’s National Climatic Data Center Integrated Surface Database. In total, there
are 1,614 weather stations across the continental United States with sufficient available data to run the
ETRHEQ method. Because many of the stations are located in developed areas, such as on airport
grounds, we adjust the weather station data to mitigate site-specific anomalies in temperature and
dew point using data provided by Parameter Elevation Regression on Independent Slopes Model
(PRISM; Daly et al., 2008). Specifically, we shift the weather station temperature and dew point measure-
ments to match the monthly means of the PRISM data aggregated to 0.25° around the weather station
(Rigden & Salvucci, 2015).

Precipitation data are from the Global Historical Climate Network Database (Menne et al., 2012). The occur-
rence of daily precipitation (but not amount) is an optional input to the ETRHEQ method used to temporally
smooth estimates of Csurf, which otherwise fluctuate too much in response to synoptic weather variability.

Hourly net solar radiation values, which are also required by the ETRHEQ method, are from the Modern-Era
Retrospective analysis for Research and Applications version 2 (MERRA-2) at 0.5° latitude by 0.625° longitude
spatial resolution (GMAO, 2017). Weather stations are matched to the corresponding MERRA-2 grid box cen-
ter that minimizes the distance between the station and grid center.
2.2.2. SM
Satellite-based near-surface SM estimates are from the SMAP Mission (Entekhabi et al., 2010). We utilize the
SMAP Level-3 36-km radiometer product, which has a nominal return frequency of 3 days and an exact repeat
frequency of 8 days. Note that these SM observations are not input to the ETRHEQmethod but are used in the
statistical model to partition ET into its source components.
2.2.3. LAI and Solar-Induced Fluorescence
LAI estimates are from the Moderate Resolution Imaging Spectroradiometer MOD15A2 product (C5), which is
an 8-day composite at 500-m resolution from the Terra satellite (Knyazikhin et al., 1998; Yang et al., 2006).
Solar-induced fluorescence (SIF) data are from the Global Ozone Monitoring Experiment-2 sensor onboard
MetOp-A. We use the version 26 level 2 740-nm terrestrial chlorophyll fluorescence data set with 09:30 over-
pass local time (Joiner et al., 2013). All remotely sensed products are gridded onto the SMAP native 36-km
EASE-2 grid using area-weighted averaging at daily scale. For station-level comparison, values from EASE-2
grid boxes with centers within 0.25° of the station are averaged, again at daily scale.

2.3. ET Partitioning Framework

Rather than estimating transpiration and soil evaporation from semiempirical vegetation and soil conduc-
tances, we decompose the estimated Csurf, EQ into vegetation (Cveg) and soil (Csoil) conductances and use
those to partition ET. This intermediate step of decomposing Csurf, EQ is necessary because the ETRHEQ
method is a diagnostic model and cannot be used in a way that allows soil and vegetation to respond sepa-
rately to environmental perturbations.

When decomposing Csurf, EQ, we allow Cveg and Csoil to respond independently to environmental variables,
such that

Csurf ¼ f vCveg Sd; VPDð Þ þ 1! f vð Þ&Csoil Sdð Þ (1)

In equation (1), Cveg, Csoil, and the vegetation fraction (fv) are estimated using an optimization model,
which is described in detail below. We allow Cveg to vary with afternoon average vapor pressure deficit
(VPD) and the degree of soil saturation (Sd; defined as volumetric SM from SMAP divided by the por-
osity), that is, Cveg(Sd, VPD), and Csoil to vary only with Sd, that is, Csoil(Sd). VPD is calculated from
meteorological measurements at the weather stations with afternoon defined as 12:30–4:30 PM local
time. The fv is allowed to vary spatially across 25 clusters, which are defined by clustering latitude
and longitude using a k-means algorithm (Figure S2a). We tested additional clustering schemes with
varying numbers of clusters and found the results to be qualitatively similar across tests. Ultimately,
we use 25 clusters, as this number of clusters well captures the gradients in fv while still allowing
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the statistics within each cluster to converge. We do not fit fv at each station to avoid overfitting the
model, as each weather station only has 2 years of data.

Values of Cveg, Csoil, and fv are estimated in an iterative process. First, a decision tree is used to partition the
space defined by Sd and VPD into bins with at least 200 observations resulting in 646 partitions. In this initial
partitioning, Csurf, EQ is estimated assuming no bare soil evaporation (i.e., setting fv = 1) and another decision
tree is used to partition the space defined by Sd into nine partitions assuming no transpiration (i.e., setting
fv = 0). With these initial constraints, themodel contains 680 unknowns, including 25 values of fv (one for each
cluster), 646 values of Cveg (which depend upon the partitions of Sd and VPD), and 9 values of Csoil (which
depend upon the partitions of Sd).

We estimate these unknowns by fitting equation (1) to the over 400,000 daily values of Csurf, EQ and
maximizing the log likelihood. Because the conductance values are strictly positive, we base the likeli-
hood on mean absolute deviations as opposed to sum-of-squares (Bloomfield & Steiger, 1983).
Importantly, with guesses at the nine unknown values of Csoil in each SM partition and 25 values of
fv, the optimal value of Cveg in each of the 646 Sd-VPD partitions can be estimated from equation (1)
as the median of (Csurf, EQ ! (1 ! fv)Csoil)/fv. We use a genetic algorithm (MATLAB2017a, 2017) to fit the
remaining 34 free parameters (fv and Csoil) via maximum likelihood. The optimization is conducted effi-
ciently with two a priori constraints: (1) values of Csoil and Cveg range between 0 and 15 mm/s, and (2)
the predicted Csurf is positively correlated with fv.

The estimation is run 10 times with different random initial guesses to ensure that a global optimum is
reached. When the algorithm is run with synthetically generated data, it recovers all imposed functional
forms of Cveg and Csoil, as well as the prescribed fv (not shown). In the remaining text, we refer to the Csurf
estimates from this decision tree framework as “Csurf, DT”. Finally, the partitioning of ET can be estimated

by assuming that T
ET ¼

f vCveg

Csurf;DT
.

The above ET partitioning method can be applied to data not derived from the ETRHEQ method. As
seen in equation (1), the ET partitioning method requires daily Csurf, Sd, and VPD, and the source of
these estimates does not change the approach (although, if Csurf is estimated from land surface para-
meterizations, the partitioning method would be circular and noninformative). We develop the ET par-
titioning method using ETRHEQ inferred Csurf because the ETRHEQ method has been shown to well
capture Csurf inferred from measurements, and the ETRHEQ method allows Csurf to be estimated at
an abundance of sites.

To summarize the ET partitioning results, we aggregate the model output from each weather station by
geographical cluster, as well as by land cover type (Friedl et al., 2010; Table 1). Each weather station is
assigned a land cover based on the dominant land cover type within a 0.25° box surrounding the sta-
tion (Figure S2b).

Table 1
Summary Statistics Aggregated Across Land Cover Types and All Stations (Bottom Row), Including the Number of Stations in
Each Land Cover Type (N); the Stomatal Slope Parameter (m); Vegetation Fraction (fv); Vegetation and Soil Conductance (Cveg
and Csoil); E/ET for Three SM Conditions, Including Dry, Intermediate (int), and Wet; and Average T/ET

Land cover type N m fv Cveg Csoil E
ET

! "
dry

E
ET

! "
int

E
ET

! "
wet

E
ET

Evergreen needleleaf forest 36 0.49 0.31 8.2 1.48 0.24 0.28 0.3 0.7
Deciduous broadleaf forest 71 0.57 0.63 9.95 2.26 0.13 0.13 0.11 0.88
Mixed forest 142 0.54 0.64 9.42 2.28 0.14 0.14 0.12 0.87
Open shrublands 88 0.46 0.23 4.37 0.39 0.05 0.18 0.41 0.77
Woody savannas 211 0.50 0.57 7.47 2.09 0.18 0.2 0.17 0.82
Grasslands 429 0.45 0.46 6.55 0.91 0.05 0.11 0.21 0.87
Croplands 374 0.50 0.62 8.85 1.66 0.08 0.13 0.14 0.88
Cropland/natural vegetation 263 0.54 0.64 9.06 1.99 0.1 0.13 0.11 0.89
All stations 1,614 0.5 0.54 7.93 1.58 0.1 0.14 0.18 0.86

Note. All values are for the summertime.
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3. Results and Discussion
3.1. Model Fit

Overall, the optimization model fits the Csurf, EQ estimates well with a daily root-mean-square error of
1.97 mm/s across all 1,614 stations. Csurf, DT is slightly underestimated at high Csurf, EQ values in the
Appalachians and eastern Midwest (Figures S3a and S3b). Estimates of Cveg and Csoil are mapped in
Figures S3c and S3d, and their dependence on environmental conditions are shown in Figure 1. When inter-
preting these results, it is important to recognize that the functional relationships in Figure 1 are not pre-
scribed, and no information on greenness or vegetation fraction is input into the statistical decision tree
model. The relationships in Figure 1 are estimated using only Csurf, EQ, remotely sensed SM, measured VPD,
and the constraint implied by equation (1).

As shown in Figure 1a, both Cveg and Csoil increase with Sd and, for a given value of Sd, Cveg decreases with
increasing VPD. Qualitatively, these relationships are both hydrologically and biologically consistent, as
Csoil is expected to increase with SM, and stomatal conductance tends to increase when soils are relatively
wet and the atmosphere is more humid. Additionally, themagnitude of Csoil is less than Cveg across themajor-
ity of Sd values, possibly reflecting that vegetation has access to deeper SM via roots and a large evaporative
surface area (if LAI > > 1).

As shown in Figure 1b, Cveg strongly declines as VPD increases. To quantitatively assess this dependence on
VPD, we estimate the slope of the relationship between Cveg and VPD using a stomatal sensitivity model
proposed by Oren et al. (1999), which takes the form: gs = 1 ! m ln (VPD), where gs is the stomatal conduc-
tance and m is the slope. Using porometric and sap flow data, Oren et al. (1999) found that the value of m
was approximately 0.6 across scales (from leaf to tree to stand), which is consistent with the theoretical value
of m assuming stomata are regulating leaf potential near a constant value. Substituting gs for Cveg, we esti-
mate the value ofm at approximately 0.5, ranging from 0.45 to 0.57 depending on land cover type (Table 1).
The shallower slopes in grasslands (m = 0.45) and shrublands (m = 0.46) are consistent with both the wider
range of VPD exhibited in water-limited conditions and the hypothesis that more drought tolerant species
exhibit less strict regulation of leaf water potential at high VPD levels (Oren et al., 1999).

The relation between Cveg and VPD becomes increasingly important in the context of climate change, as VPD
is predicted to increase over 50% by 2100 (Ficklin & Novick, 2017). Although declines in Cveg do not necessa-
rily imply declines in transpiration, as increasing VPD still acts to increase evaporation from the stomatal pore,
a strong enough stomatal response (i.e., a large m value) will reduce transpiration (Farquhar, 1978; Jones,
2014). For example, if we assume T~VPD × Cveg = VPD × (1 ! m ln (VPD)) and VPD ranges between 0 and
3 kPa, declines in T occur when m exceeds approximately 0.4, as shown in Figure S4. Unlike transpiration,
an increase in VPD will always increase soil evaporation if water is available. This diverging response of

Figure 1. The Cveg and Csurf decision tree fit as a function of (a) soil saturation (Sd; x-axis) and vapor pressure deficit (VPD;
colors), (b) VPD (x-axis) and Sd (colors), and the probability density function (pdf) of summertime days with observed (c) Sd
and (d) VPD (aggregated across all stations). Recall that Cveg is a function of Sd and VPD, and Csoil is a function of only Sd.
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vegetation and soils to increases in VPD highlights the importance of
accurately partitioning ET in Earth system models and is the topic of
future work.

3.2. Comparison With LAI and SIF

To evaluate the model output, we compare estimates of modeled fv to
satellite-inferred LAI and modeled fvCveg to satellite-observed SIF and find
strong agreement between variables in both comparisons, as shown in
Figure 2 and described below. In these comparisons, data are averaged
spatially by cluster and temporally over both summers.

First, modeled fv is positively correlated with satellite-inferred LAI
(r2 = 0.70), signifying that the model captures vegetation amount well
across the 25 clusters. Rather than treating grid boxes as “mosaics” of
vegetation and soil (as in this study), Cveg can also be modeled by scaling
stomatal conductance by LAI (Stewart, 1988). Hence, fv and LAI should be
positively correlated as they both act to scale Cveg by vegetation amount.
We identify an exponential relationship between fv and LAI, consistent
with observations (e.g., Choudhury, 1987).

Second, the estimated vegetation component of Csurf (i.e., fvCveg) is posi-
tively correlated with satellite-observed SIF (r2 = 0.87). Recall that we are

assuming that T
ET ¼

f vCveg

Csurf;DT
, which is equivalent to assuming that the fvCveg

term is proportional to transpiration. Thus, we are demonstrating a strong
linear relationship (r2 = 0.87) between SIF and T across the 25 clusters. A
similar linear relationship between SIF and ET was recently demonstrated
temporally for nonstressed conditions at an eddy covariance flux tower
located in a temperate, mixed hardwood forest (Lu et al., 2018).

3.3. Assessing ET Partitioning

It is somewhat challenging to compare the ET partitioning estimates from
this statistical model directly to field-scale observations because the lack of
partitioning estimates specific to the summers of 2015 and 2016, and the
large spatial and temporal variability in ET partitioning estimates between
sites and years. Furthermore, recent synthesis analyses report annual ET
partitioning averages (Schlesinger & Jasechko, 2014; Wang et al., 2014;
Wei et al., 2017), while we focus exclusively on summertime fluxes.
Presumably, since T/ET is positively related to LAI on average (Wang

Figure 2. Comparison of (a) satellite-inferred LAI to modeled fv and (b) modeled Cveg × fv to observed SIF averaged over
the two summers by geographic cluster (mapped in Figure S2a). In (a) the modeled variable (fv) is on the y-axis to facili-
tate comparison with Figure 2a in Choudhury (1987). Fit equations and r2 values are printed in each subplot. LAI = leaf area
index; SIF = solar-induced fluorescence.

Figure 3. Fraction of soil evaporation contributing to total evaporation (E/ET)
when (a) SM is low, (b) SM is intermediate, and (c) SM is high. The SM ranges
are defined based on the quantiles for that station, as described in the text.
SM = soil moisture; ET = evapotranspiration.
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et al., 2014; Wei et al., 2017), the summertime T/ET estimates presented in this study are larger than annual
average T/ET. Consistent with previous findings though, our results suggest that transpiration dominants
ET (Jasechko et al., 2013; Miralles et al., 2011; Schlesinger & Jasechko, 2014), particularly where LAI is high
(Figure S5).

When aggregated by land cover type, we find that our results agree well with previous observational studies.
Consistent with our results, Schlesinger and Jasechko (2014) found that observed T/ET in temperature decid-
uous forests is on average greater than T/ET in temperate coniferous forests, T/ET is on average lowest for
shrublands, and T/ET in temperate grasslands is not significantly distinct from shrublands or forests. It is
important to recognize that Schlesinger and Jasechko (2014) also demonstrated considerable overlap in
T/ET across plant functional types and climates, highlighting the large variability in T/ET estimates.

To further assess the ET partitioning estimates, we separate the contribution of soil evaporation to total ET (E/
ET = 1! T/ET) in dry, intermediate, and wet conditions, as shown in Figure 3. For each station, we define “dry”
conditions to be when the daily Sd is less than the 10th percentile, “intermediate” conditions to be when the
daily Sd is between the 40th and 60th percentiles, and “wet” conditions to be when the daily Sd exceeds the
90th percentile. As shown in Figure 3 and Table 1, E/ET decreases from wet to dry conditions, specifically in
the water-limited western United States. This signifies that, particularly in the western United States, the con-
tribution of soil evaporation to ET decreases more rapidly with SM than the contribution of transpiration. This
is expected, as plants have access to deeper soil reserves. Field studies have demonstrated that near-surface
SM can decline below the wilting point with simultaneous increases in ET (e.g., Thompson et al., 2011), indi-
cating that plants are accessing deeper moisture reserves via roots and modulating conductances accord-
ingly. Dry spells can also lead to increased E/ET if water limitations stunt vegetation growth (e.g., Ferretti
et al., 2003); however, identifying such temporal relationships is out of the scope of this study but a possible
topic of future research.

4. Concluding Remarks

Accurately partitioning ET is one of the key research gaps in ET research (Fisher et al., 2017). Here we outline a
methodology to estimate the partitioning of summertime ET using meteorological data and remotely sensed
SM. We find a strong positive relationship between modeled fv and satellite-inferred LAI, as well as between
modeled fvCveg and satellite-observed SIF, demonstrating that the method captures the spatial dynamics of
vegetation activity during the summers of 2015 and 2016. Although recent research has focused on estimat-
ing ET from meteorological data (Gentine et al., 2016; Rigden & Salvucci, 2015), to our knowledge this is the
first attempt to partition these ET estimates into vegetation and soil components.

Some limitations of this study include the following: (1) We do not take into account the evaporation of inter-
cepted water from the canopy; (2) to estimate T/ET, we model the output of the ETRHEQ method, which not
only facilitates this study but also increases uncertainty due to propagating errors; and (3) the model evalua-
tion is limited, as comparable measurements of transpiration and bare soil evaporation are currently
not available.

To constrain estimates of ET and the hydrologic cycle in future climates, it is critical we develop observation-
based estimates of ET partitioning at large spatial scales. The sensitivity of ET to environmental factors
depends on the sensitivity of each source component (Wang & Dickinson, 2012), and these sensitivities are
not similar for transpiration and soil evaporation, as exemplified in the case of increasing VPD.
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