Argosy: Verifying Layered Storage Systems with
Recovery Refinement

Tej Chajed
MIT CSAIL, USA
tchajed@mit.edu

M. Frans Kaashoek
MIT CSAIL, USA
kaashoek@mit.edu

Abstract

Storage systems make persistence guarantees even if the
system crashes at any time, which they achieve using recov-
ery procedures that run after a crash. We present Argosy, a
framework for machine-checked proofs of storage systems
that supports layered recovery implementations with modu-
lar proofs. Reasoning about layered recovery procedures is
especially challenging because the system can crash in the
middle of a more abstract layer’s recovery procedure and
must start over with the lowest-level recovery procedure.
This paper introduces recovery refinement, a set of condi-
tions that ensure proper implementation of an interface with
a recovery procedure. Argosy includes a proof that recov-
ery refinements compose, using Kleene algebra for concise
definitions and metatheory. We implemented Crash Hoare
Logic, the program logic used by FSCQ [8], to prove recovery
refinement, and demonstrated the whole system by verifying
an example of layered recovery featuring a write-ahead log
running on top of a disk replication system. The metatheory
of the framework, the soundness of the program logic, and
these examples are all verified in the Coq proof assistant.

CCS Concepts -« Theory of computation — Program
verification; « Hardware — System-level fault tolerance.

Keywords Kleene Algebra, Refinement

ACM Reference Format:

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai
Zeldovich. 2019. Argosy: Verifying Layered Storage Systems with
Recovery Refinement. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3314221.3314585

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI °19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6712-7/19/06.
https://doi.org/10.1145/3314221.3314585

Joseph Tassarotti
MIT CSAIL, USA
jtassaro@andrew.cmu.edu

Nickolai Zeldovich
MIT CSAIL, USA

nickolai@csail.mit.edu general background on the
storage systems

1 Introduction

Storage systems, including file systems, databases, and persis-
tent key-value stores, must protect data from loss even when
the computer crashes (e.g., due to a power failure). These
systems provide crash-safety guarantees about what data
persists if such crashes occur. To achieve these guarantees,
many systems perform some form of repair in a recovery
procedure that runs after a reboot.

Storage systems are typically structured into several lay-
ered abstractions. For example, a storage system might use
several physical disks for redundancy. By replicating writes
across these disks, the storage system can implement an in-
terface presenting a single synchronous disk, and then use
write-ahead logging to implement a transactional API for
atomically writing multiple disk blocks (see Figure 1).

an extended example
| Transactional API | illustrating layering and
: recovery
I .
1 Logging
y
| Single disk |
T
: Replication
y

| Multiple unreliable disks |

Figure 1. A simple storage system that uses recovery at
multiple layers of abstraction.

If the computer crashes, write operations may have oc-
curred on only some of the physical disks. To repair its state,
the storage system runs a recovery procedure after reboot.
First, it propagates missing writes to the remaining disks to
restore replication. Then, it reads the transaction log to de-
termine if transactions need to be aborted or applied, based
on whether the system crashed before or after they were
committed. The storage system may have to run the recovery
procedure several times, because the system can crash again
during recovery.

https://doi.org/10.1145/3314221.3314585
https://doi.org/10.1145/3314221.3314585
Tej Chajed

Tej Chajed
general background on the
storage systems�

Tej Chajed

Tej Chajed
an extended example
illustrating layering and
recovery�

Problem
statement

Main
contribution

PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

Because a storage system needs to handle crashes at any
time,! implementing and testing them is difficult. Storage
systems in practice have had bugs that resulted in data loss
and data leaks [16, 17, 23]. Since these bugs are costly, formal
verification is attractive because it can rule out large classes
of bugs. For verification to scale to modern, complex storage
systems, the proofs for the implementations in each layer
should be independent. This independence is hard to achieve
because crashes during one layer of abstraction’s recovery
procedure requires re-running all of the recovery procedures
of lower levels. For example, with the system in Figure 1, a
crash in the middle of the write-ahead log’s recovery proce-
dure may leave disks out-of-sync, which requires starting
over with the replicated disk’s recovery.

This paper presents Argosy, a framework for verifying
storage systems that supports layered recovery procedures
with modular proofs. Argosy introduces the notion of re-
covery refinement, a set of proof obligations for an imple-
mentation and recovery procedure. These obligations are
sufficient to guarantee clients observe the specification be-
havior, including with multiple crashes followed by recovery.
Furthermore, recovery refinement composes between two
implementations: this allows the developer to prove each
implementation separately and then obtain a proof about
the whole system with a general composition theorem. We
describe the metatheory behind recovery refinement in sec-
tion 4. The framework is encoded in the Coq proof assistant,
with machine-checked proofs of soundness.

There are several existing systems that support reasoning
about crashes and recovery, particularly in the context of
file-system verification [7, 8, 11, 26, 28]. Most have no sup-
port for layered recovery, since they consider only a single
recovery procedure at a time. The Flashix modular crash
refinement work [11] does consider layered recovery, but to
simplify proofs recovery procedures cannot rely on being
able to write to disk. Argosy supports active recovery proce-
dures which write to persistent storage; both the replicated
disk and write-ahead log implementations rely on active
recovery. Furthermore, the metatheory for a number of exist-
ing systems is based on pen & paper proofs, whereas Argosy
has machine-checked proofs for both the metatheory and
example programs.

To prove recovery refinement within a single layer, Ar-
gosy supports a variant of Crash Hoare Logic (CHL), the
logic used in the FSCQ verified file system [7, 8]. Argosy gen-
eralizes FSCQ’s CHL by supporting non-deterministic crash
behavior, whereas FSCQ modeled only persistent state and
assumed it was unaffected by a crash. The main benefit of
using CHL is that as long as recovery’s specification satisfies

Secondary contribution:
was introduced in prior work

n this work we use “crash” to refer to the entire storage system halting
and requiring restart, such as due to a power failure or kernel panic.

Secondary contribution:

but an interesting technique

not essential to solving the problem,

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich

an idempotence condition, the developer can reason about re-
covery using only its specification and ignore crashes during
recovery.

To simplify the definition of recovery execution as well as
facilitate proofs of Argosy’s metatheory for recovery refine-
ment, we formulated the execution semantics and recovery
refinement using the combinators of Kleene algebra [18].
Kleene algebra is well-suited for this purpose because it
models sequencing, non-determinism, and unbounded iter-
ation, which arise naturally when reasoning about crashes
and recovery.

As a demonstration of Argosy, we implemented and ver-
ified the storage system of Figure 1. The disk replication
and write-ahead log are separately verified using CHL, each
with its own recovery procedure; section 6 details how this
proof works in CHL within Argosy. We then compose them
together to obtain a verified transactional disk API imple-
mented on top of two unreliable disks. The composed imple-
mentation extracts and runs, using an interpreter in Haskell
to implement the physical disk operations at the lowest level.

The paper’s contributions are as follows:

1. Argosy, a framework for proving crash-safety proper-
ties of storage systems that introduces recovery refine-
ment to support modular proofs with layered recovery
procedures.

2. Machine-checked proofs in Coq of the metatheory
behind recovery refinement that are simplified by ap-
pealing to properties of Kleene algebra.

3. An implementation of Crash Hoare Logic (CHL) for
proving a single layer of recovery refinement, which
we use to verify an example of a storage system with
layered recovery.

Summarize contributions in order of importance

This paper’s introduction orients the reader, even though this
requires a lot of space. It introduces general background before
going into any details on the solution. It first orients the reader
(assumed to be in programming languages) to the general
problem of writing storage systems that tolerate crashes. Next,
it gives an extended example that leads to the core problem:
“...the proofs for the implementations in each layer should be
independent. This independence is hard to achieve because
crashes during one layer of abstraction’s recovery procedure
requires re-running all of the recovery procedures of lower
levels.”

Tej Chajed

Tej Chajed

Tej Chajed

Tej Chajed

Tej Chajed

Tej Chajed

Tej Chajed

Tej Chajed

Tej Chajed
Problem
statement�

Tej Chajed

Tej Chajed
Main
contribution�

Tej Chajed

Tej Chajed
Secondary contribution: was introduced in prior work

Tej Chajed

Tej Chajed
Secondary contribution:
not essential to solving the problem,
but an interesting technique�

Tej Chajed

Tej Chajed
Summarize contributions in order of importance

Tej Chajed

Tej Chajed

Tej Chajed
This paper’s introduction orients the reader, even though this requires a lot of space. It introduces general background before going into any details on the solution. It first orients the reader (assumed to be in programming languages) to the general problem of writing storage systems that tolerate crashes. Next, it gives an extended example that leads to the core problem: “...the proofs for the implementations in each layer should be independent. This independence is hard to achieve because crashes during one layer of abstraction’s recovery procedure requires re-running all of the recovery procedures of lower levels.”�

	Abstract
	1 Introduction
	2 Related Work
	3 Combinators for Crash Semantics
	3.1 Overview
	3.2 Interfaces
	3.3 Kleene Algebra Combinators
	3.4 Execution Semantics

	4 Recovery Refinement
	4.1 Implementations
	4.2 Correctness
	4.3 Composition

	5 Embedding Crash Hoare Logic
	6 Examples
	6.1 Disk Replication
	6.2 Write-Ahead Logging
	6.3 Composing Replication and Write-Ahead Logging

	7 Implementation
	8 Conclusion
	Acknowledgments
	References

