
Principal Component Projection Without Principal Component Analysis

Roy Frostig RF@CS.STANFORD.EDU

Stanford University

Cameron Musco CNMUSCO@MIT.EDU
Christopher Musco CPMUSCO@MIT.EDU

MIT

Aaron Sidford ASID@MICROSOFT.COM

Microsoft Research, New England

Abstract

We show how to efficiently project a vector onto
the top principal components of a matrix, without
explicitly computing these components. Specif-
ically, we introduce an iterative algorithm that
provably computes the projection using few calls
to any black-box routine for ridge regression.
By avoiding explicit principal component analy-
sis (PCA), our algorithm is the first with no run-
time dependence on the number of top princi-
pal components. We show that it can be used to
give a fast iterative method for the popular prin-
cipal component regression problem, giving the
first major runtime improvement over the naive
method of combining PCA with regression.
To achieve our results, we first observe that ridge
regression can be used to obtain a “smooth pro-
jection” onto the top principal components. We
then sharpen this approximation to true projec-
tion using a low-degree polynomial approxima-
tion to the matrix step function. Step function
approximation is a topic of long-term interest in
scientific computing. We extend prior theory by
constructing polynomials with simple iterative
structure and rigorously analyzing their behavior
under limited precision.

1. Introduction

In machine learning and statistics, it is common—often
essential—to represent data in a concise form that de-
creases noise and increases efficiency in downstream tasks.
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Perhaps the most widespread method for doing so is to
project data onto the linear subspace spanned by its direc-
tions of highest variance—that is, onto the span of the top
components given by principal component analysis (PCA).
Computing principal components can be an expensive task,
a challenge that prompts a basic algorithmic question:

Can we project a vector onto the span of a ma-
trix’s top principal components without perform-
ing principal component analysis?

This paper answers that question in the affirmative, demon-
strating that projection is much easier than PCA itself. We
show that it can be solved using a simple iterative algorithm
based on black-box calls to a ridge regression routine. The
algorithm’s runtime does not depend on the number of top
principal components chosen for projection, a cost inher-
ent to any algorithm for PCA, or even algorithms that just
compute an orthogonal span for the top components.

1.1. Motivation: principal component regression

To motivate our projection problem, consider one of the
most basic downstream applications for PCA: linear regres-
sion. Combined, PCA and regression comprise the princi-
pal component regression (PCR) problem:
Definition 1.1 (Principal component regression (PCR)).
Let A 2 Rn⇥d be a design matrix whose rows are data
points and let b 2 Rn be a vector of data labels. Let
A

�

2 Rn⇥d denote the result of projecting each row
of A onto the span of the top principal components of
A, i.e. the eigenvectors of the covariance matrix 1

n

A

T
A

whose corresponding eigenvalue exceeds a threshold �.
The task of PCR is to find a minimizer of the squared loss
kA

�

x� bk22. In other words, the goal is to compute A†
�

b,
where A

†
�

is the Moore-Penrose pseudoinverse of A
�

.

PCR is a key regularization method in statistics, numerical
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linear algebra, and scientific disciplines including chemo-
metrics (Hotelling, 1957; Hansen, 1987; Frank & Fried-
man, 1993). It models the assumption that small principal
components represent noise rather than data signal. PCR
is typically solved by first using PCA to compute A

�

and
then applying linear regression. The PCA step dominates
the algorithm’s cost, especially if many principal compo-
nents have variance above the threshold �.

We remedy this issue by showing that our principal com-
ponent projection algorithm yields a fast algorithm for re-
gression. Specifically, full access to A

�

is unnecessary for
PCR: A†

�

b can be computed efficiently given only an ap-
proximate projection of the vector AT

b onto A’s top prin-
cipal components. By solving projection without PCA we
obtain the first PCA-free algorithm for PCR.

1.2. A first approximation: ridge regression

Our approach to efficient principal component projection
is actually based on a common alternative to PCR: ridge
regression. This ubiquitous method computes a minimizer
of kAx� bk22 + �kxk22 for some regularization parameter
� (Tikhonov, 1963). The advantage of ridge regression is
that it is a simple convex optimization problem that can be
solved efficiently using many techniques (see Lemma 2.1).

Solving ridge regression is equivalent to applying the ma-
trix (A

T
A+�I)�1

A

T, an operation that can be viewed as
a smooth relaxation of PCR. Adding the `2 norm penalty
(i.e. �I) effectively “washes out” A’s small principal com-
ponents in comparison to its large ones and achieves an ef-
fect similar to PCR at the extreme ends of A’s spectrum.

Accordingly, ridge regression gives access to a “smooth
projection” operator, (AT

A+�I)�1
A

T
A, which approxi-

mates P
A

�

, the projection onto A’s top row principal com-
ponents. Both have the same singular vectors, but P

A

�

has
a singular value of 1 for each squared singular value �2

i

� �
in A and a singular value of 0 for each �2

i

< �, whereas
(A

T
A + �I)�1

A

T
A has singular values equal to �

2
i

�

2
i

+�

.
This function approaches 1 when �2

i

is much greater than
� and 0 when it is smaller. Figure 1 shows the comparison.

Unfortunately, in many settings, ridge regression is a very
crude approximation to PCR and projection and may per-
form significantly worse in certain data analysis applica-
tions (Dhillon et al., 2013). In short, while ridge regression
algorithms are valuable tools, it has been unclear how to
wield them for tasks like projection or PCR.

1.3. Main result: from ridge regression to projection

We show that it is possible to sharpen the weak ap-
proximation given by ridge regression. Specifically,
there exists a low degree polynomial p(·) such that
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Figure 1: Singular values of the projection matrix P

A

�

vs. those of the smooth projection operator (A

T
A +

�I)�1
A

T
A obtained from ridge regression.

p
�
(A

T
A+ �I)�1

A

T
A

�
y provides a very accurate ap-

proximation to P

A

�

y for any y 2 Rd. Moreover, the poly-
nomial can be evaluated as a recurrence, which translates
into a simple iterative algorithm: we can apply the sharp-
ened approximation to a vector by repeatedly applying any
ridge regression routine a small number of times.
Theorem 1.2 (Principal component projection without
PCA). Given A 2 Rn⇥d and y 2 Rd, Algorithm 1 uses
˜O(��2

log(1/✏)) approximate applications of (A

T
A +

�I)�1 and returns x with kx�P

A

�

yk2  ✏kyk2.

Like all iterative PCA algorithms, our running time scales
inversely with �, the spectral gap around �.1 Notably, it
does not depend on the number of principal components in
A

�

, a cost incurred by any method that applies the projec-
tion P

A

�

directly, either by explicitly computing the top
principal components of A, or even by just computing an
orthogonal span for these components.

As mentioned, the above theorem also yields an algorithm
for principal component regression that computes A

†
�

b

without finding A

�

. We achieve this result by introduc-
ing a robust reduction, from projection to PCR, that again
relies on ridge regression as a computational primitive.
Corollary 1.3 (Principal component regression without
PCA). Given A 2 Rn⇥d and b 2 Rn, Algorithm 2 uses
˜O(��2

log(1/✏)) approximate applications of (A

T
A +

�I)�1 and returns x with kx�A

†
�

bk
A

T
A

 ✏kbk2.

Corollary 1.3 gives the first known algorithm for PCR that
avoids the cost of principal component analysis.

1.4. Related work

A number of papers attempt to alleviate the high cost of
principal component analysis when solving PCR. It has

1See Section 3.2 for a discussion of this gap dependence.
Aside from a full SVD requiring O(nd2) time, any PCA algo-
rithm giving the guarantee of Theorem 1.2 will have a dependence
both on � and on the number principal components in A�. How-
ever, the � dependence can be better – ��1/2 for Krylov methods
(Musco & Musco, 2015), giving a runtime tradeoff.
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been shown that an approximation to A

�

suffices for solv-
ing the regression problem (Chan & Hansen, 1990; Bout-
sidis & Magdon-Ismail, 2014). Unfortunately, even the
fastest approximations are much slower than routines for
ridge regression and inherently incur a linear dependence
on the number of principal components above �.

More closely related to our approach is work on the ma-
trix sign function, an important operation in control the-
ory, quantum chromodynamics, and scientific computing
in general. Approximating the sign function often involves
matrix polynomials similar to our “sharpening polynomial”
that converts ridge regression to principal component pro-
jection. Significant effort addresses Krylov methods for ap-
plying such operators without computing them explicitly
(van den Eshof et al., 2002; Frommer & Simoncini, 2008).

Our work differs from these methods in an important way:
since we only assume access to an approximate ridge re-
gression algorithm, it is essential that our sharpening step
is robust to noise. Our iterative polynomial construction al-
lows for a complete and rigorous noise analysis that is not
available for Krylov methods, while at the same time elim-
inating space and post-processing costs. Iterative approx-
imations to the matrix sign function have been proposed,
but lack rigorous noise analysis (Higham, 2008).
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