
Karaoke: Distributed Private Messaging
Immune to Passive Tra�c Analysis

David Lazar, Yossi Gilad, and Nickolai Zeldovich
MIT CSAIL

Abstract
Karaoke is a system for low-latency metadata-private com-
munication. Karaoke provides di↵erential privacy guaran-
tees, and scales better with the number of users than prior
such systems (Vuvuzela and Stadium). Karaoke achieves
high performance by addressing two challenges faced
by prior systems. The first is that di↵erential privacy re-
quires continuously adding noise messages, which leads
to high overheads. Karaoke avoids this using optimistic

indistinguishability: in the common case, Karaoke re-
veals no information to the adversary, and Karaoke clients
can detect precisely when information may be revealed
(thus requiring less noise). The second challenge lies in
generating su�cient noise in a distributed system where
some nodes may be malicious. Prior work either required
each server to generate enough noise on its own, or used
expensive verifiable shu✏es to prevent any message loss.
Karaoke achieves high performance using e�cient noise

verification, generating noise across many servers and
using Bloom filters to e�ciently check if any noise mes-
sages have been discarded. These techniques allow our
prototype of Karaoke to achieve a latency of 6.8 seconds
for 2M users. Overall, Karaoke’s latency is 5⇥ to 10⇥
better than Vuvuzela and Stadium.

1 Introduction
Text messaging systems are often vulnerable to tra�c
analysis, which reveals communication patterns like who
is communicating with whom. Hiding this information
can be important for some users, such as journalists and
whistleblowers. However, building a messaging system
just for whistleblowers is not a good idea, because us-
ing this system would be a clear indication of who is a
whistleblower [9]. Thus, it is important to build metadata-
private messaging systems that can support a large number
of users with acceptable performance, so as to provide
“cover” for sensitive use cases.

A significant limitation of prior work, such as Vu-
vuzela [26], Pung [1], and Stadium [25], is that they incur
high latency. For example, with 2 million connected users,
Vuvuzela has an end-to-end latency of 55 seconds, and
the latencies of Pung and Stadium are even higher. Such
high latencies hinder the adoption of these designs.

This paper presents Karaoke, a metadata-private mes-
saging system that reduces latency by an order of mag-
nitude compared to prior work. For instance, Karaoke

achieves an end-to-end latency of 6.8 seconds for 2 mil-
lion connected users on 100 servers (on Amazon EC2 with
simulated 100 msec round-trip latency between servers),
80% of which are assumed to be honest, and achieves dif-
ferential privacy guarantees comparable to Vuvuzela and
Stadium. Furthermore, Karaoke can maintain low latency
even as the number of users grows, by scaling horizon-
tally (i.e., having independent organizations contribute
more servers). Karaoke supports 16 million users with 28
seconds of latency, a 10⇥ improvement over Stadium.

Achieving high performance requires Karaoke to ad-
dress two challenges. The first challenge is that di↵er-
ential privacy typically requires adding noise to limit
data leakage. Prior work achieves di↵erential privacy
for private messaging by enumerating what metadata an
adversary could observe (e.g., the number of messages ex-
changed in a round of communication), and adding fake
messages (“noise”) that are mixed with real messages
to obscure this information. This translates into a large
number of noise messages that have to be added every
round, and handling these noise messages incurs a high
performance cost.

Karaoke addresses this challenge using optimistic in-

distinguishability. Karaoke’s design avoids leaking in-
formation in the common case, when there are no active
attacks. Karaoke further ensures that clients can precisely
detect whether any information was leaked (e.g., due to an
active attack), so that the clients can stop communicating
to avoid leaking more data. This allows Karaoke to add
fewer noise messages, because the noise messages need to
mask fewer message exchanges (namely, just those where
an active attack has occurred).

The second challenge lies in generating the noise in
the presence of malicious servers. One approach is to
require every server to generate all of the noise on its
own, under the assumption that every other server is mali-
cious [26]. This scheme leads to an overwhelming num-
ber of noise messages as the number of servers grows.
Another approach is to distribute noise generation across
many servers. However, a malicious server might drop
the noise messages before they are mixed with messages
from legitimate users. As a result, achieving privacy re-
quires the use of expensive zero-knowledge proofs (e.g.,
verifiable shu✏es) to ensure that an adversary cannot
drop messages [25]. This approach reduces the number

1

Tej Chajed


Tej Chajed
general introduction

Tej Chajed


Tej Chajed


Tej Chajed
quantifies
problem statement�

Tej Chajed
problem
statement�

Tej Chajed


Tej Chajed
why is high
performance difficult?
A: generating noise�

Tej Chajed


Tej Chajed
why is generating noise difficult?
A: malicious servers
may not add noise�

Tej Chajed


Tej Chajed
1st contribution: handle active and passive attacks differently

Tej Chajed


Tej Chajed
Main contribution: Karaoke is 10x faster than previous work

Tej Chajed


Tej Chajed
quantify improvement
for some specific parameters�

Tej Chajed
This introduction describes a knowledge gap with two specific challenges, expanding on the problem statement

Tej Chajed
This paper appeared in the Proceedings of the 13th USENIX Symposium on Operating System Design and Implementation (OSDI 2018).

All rights reserved by original author(s). Please contact cl-director@mit.edu for usage questions.�



of noise messages, but leads to significant CPU overheads
due to cryptography.

Karaoke’s insight is that verifiable shu✏es are overkill:
it is not necessary for all messages to be preserved, and
it is not necessary to prove this fact to arbitrary servers.
Instead, to achieve privacy, it su�ces for each server to
ensure that its noise is observed by all other servers. This
can be done e�ciently using Bloom filters, without having
to reveal which messages are noise and which messages
come from real users.

The contributions of this paper are as follows:
• The design of Karaoke, a metadata-private text mes-

saging system that achieves an order of magnitude
lower latency than prior work.

• Two techniques, optimistic indistinguishability and
e�cient noise verification, which allow Karaoke to
achieve high performance.

• A privacy analysis of Karaoke’s design that supports
the use of these techniques.

• An experimental evaluation of a prototype of Karaoke.
One limitation of Karaoke is that it does not provide

fault tolerance, since it requires all servers to be online.
Handling server outages and denial-of-service attacks is
an interesting direction for future work.

2 Related work
In this section, we compare Karaoke to prior work in two
dimensions: privacy guarantees and the trade-o↵ between
scalability and server trust assumptions.

2.1 Privacy guarantees
Karaoke considers adversaries that control network links
and some of the system’s servers. This attacker model
rules out systems based on Tor [7] such as Ricochet [3],
due to tra�c analysis attacks [5, 11, 18]. Loopix [20] is a
recent system that delays messages and uses entropy [24]
as a metric for reasoning about a user’s anonymity set.
However, Loopix does not provide any formal guaran-
tees about privacy after users exchange multiple mes-
sages; it also requires users to trust a designated service
provider [20: Table 1].

Some systems leak no information to the attacker, us-
ing techniques like DC-nets [28], Private Information
Retrieval [1], or message broadcast [4]. Such systems pro-
vide the strongest form of privacy that users could hope
for, but due to the quadratic overhead of these schemes
in the number of users, their latency becomes high when
supporting millions of users.

Karaoke achieves di↵erential privacy for metadata-
private messaging, much like Vuvuzela [26], Alpen-
horn [15], and Stadium [25]. One key di↵erence in
Karaoke is that its design leaks no information about
a user’s tra�c patterns in the common case, when there

Alice
. . .

Bob

1

2

. . .

N

1

2

. . .

N

. . .

. . .

. . .

. . .

1

2

. . .

N

B

A

. . .

C

Users Servers Dead drops

Figure 1: Overview of Karaoke’s design.

are no lost messages, using the idea of optimistic indis-
tinguishability. This allows Karaoke to add less noise for
reaching the same privacy level as prior work [15, 25, 26],
which improves performance.

Like Stadium, Karaoke is distributed over many ma-
chines, and must ensure that malicious servers do not
compromise privacy. Stadium uses zero-knowledge
proofs (e.g., verifiable shu✏es) for this purpose, whereas
Karaoke relies on more e�cient Bloom filter checks.

2.2 Scalability vs. trust assumptions

Systems that assume the anytrust model (where all but
one server may be malicious), such as Vuvuzela [26], Dis-
sent [28], and Riposte [4], do not scale horizontally and
cannot support the same magnitude of users as Karaoke.

One approach to horizontal scalability in metadata pri-
vate messaging systems is to route messages through only
a subset of all servers in the network, as in Loopix, Sta-
dium, and Atom [14]. This requires trusting multiple
servers to be honest, and introduces a tradeo↵ between
the number of trusted servers (translating into the number
of servers that process each message) and performance.

In Loopix every message is processed by a small num-
ber of servers (e.g., Loopix considers 3 or more servers
to be a good choice [20: §4.3.1]). For privacy, Loopix
requires that one of these servers is honest. However, if a
significant fraction of servers are malicious, using a small
number of servers means some users’ messages will not
be processed by any honest server. Karaoke ensures pri-
vacy with high probability by sending messages through
more servers (e.g., 14 servers).

Atom [14] assumes that a fraction of the servers might
be corrupt, and requires each message to be processed
by many servers (hundreds). This leads to high latency,
from 30 minutes to several hours. Karaoke also assumes
that some fraction of servers are malicious. However
it arranges its servers in a di↵erent, full-mesh topology,
which allows it to achieve privacy while processing each
message at fewer servers (e.g., 14 servers).

2

Tej Chajed


Tej Chajed
2nd insight: use Bloom filters to check noise is observed, not all messages

Tej Chajed


Tej Chajed
summarize
contributions in order of importance�

Tej Chajed


Tej Chajed


Tej Chajed
The Karaoke paper does a good job concisely motivating the work; the introduction early on says “...building a messaging system just for whistleblowers is not a good idea, because using this system would be a clear indication of who is a whistleblower. Thus, it is important to build metadata-private messaging systems that can support a large number of users with acceptable performance, so as to provide ‘cover’ for sensitive use cases.” Not only does the introduction argue why metadata-private messaging is important, it makes a concise case why performance is important for achieving privacy. Next, the introduction makes the problem statement concrete by citing the performance achieved by the prior work.

It also gives just enough technical detail to clarify what the paper is about without going into so much depth as to lose any readers. For example, “Karaoke addresses this challenge using optimistic indistinguishability. Karaoke’s design avoids leaking information in the common case, when there are no active attacks. Karaoke further ensures clients can precisely detect whether any information was leaked (e.g., due to an active attack).” This gives an overall flavor of what the technique accomplishes (use simpler techniques to hide information if there aren’t active attacks, detect and address active attacks separately), without describing how it is implemented. Furthermore, the name “optimistic indistinguishability” alludes to a similar technique called optimistic concurrency control that readers are likely to be familiar with.
�


	Introduction
	Related work
	Privacy guarantees
	Scalability vs. trust assumptions

	Overview
	Goals and threat model
	Privacy approach

	Design
	Overall structure
	Client
	Server

	Analysis
	Efficient noise verification
	Optimistic indistinguishability
	Avoiding metadata leakage
	Alice talking with Bob, and claims ``idle''
	Alice idle, and claims ``talking with Bob''

	Message loss and differential privacy

	Implementation
	Parameter selection

	Evaluation
	Experimental setup
	Karaoke achieves low latency
	Scaling by adding servers
	Fraction of honest servers
	Importance of techniques
	Leakage due to network issues

	Conclusion

