
goes into designing effective losses. In other words, we still
have to tell the CNN what we wish it to minimize. But, just
like King Midas, we must be careful what we wish for! If
we take a naive approach and ask the CNN to minimize the
Euclidean distance between predicted and ground truth pix-
els, it will tend to produce blurry results [43, 62]. This is
because Euclidean distance is minimized by averaging all
plausible outputs, which causes blurring. Coming up with
loss functions that force the CNN to do what we really want
– e.g., output sharp, realistic images – is an open problem
and generally requires expert knowledge.

It would be highly desirable if we could instead specify
only a high-level goal, like “make the output indistinguish-
able from reality”, and then automatically learn a loss func-
tion appropriate for satisfying this goal. Fortunately, this is
exactly what is done by the recently proposed Generative
Adversarial Networks (GANs) [24, 13, 44, 52, 63]. GANs
learn a loss that tries to classify if the output image is real
or fake, while simultaneously training a generative model
to minimize this loss. Blurry images will not be tolerated
since they look obviously fake. Because GANs learn a loss
that adapts to the data, they can be applied to a multitude of
tasks that traditionally would require very different kinds of
loss functions.

In this paper, we explore GANs in the conditional set-
ting. Just as GANs learn a generative model of data, condi-
tional GANs (cGANs) learn a conditional generative model
[24]. This makes cGANs suitable for image-to-image trans-
lation tasks, where we condition on an input image and gen-
erate a corresponding output image.

GANs have been vigorously studied in the last two
years and many of the techniques we explore in this pa-
per have been previously proposed. Nonetheless, ear-
lier papers have focused on specific applications, and
it has remained unclear how effective image-conditional
GANs can be as a general-purpose solution for image-to-
image translation. Our primary contribution is to demon-
strate that on a wide variety of problems, conditional
GANs produce reasonable results. Our second contri-
bution is to present a simple framework sufficient to
achieve good results, and to analyze the effects of sev-
eral important architectural choices. Code is available at
https://github.com/phillipi/pix2pix.

2. Related work
Structured losses for image modeling Image-to-image

translation problems are often formulated as per-pixel clas-
sification or regression (e.g., [39, 58, 28, 35, 62]). These
formulations treat the output space as “unstructured” in the
sense that each output pixel is considered conditionally in-
dependent from all others given the input image. Condi-
tional GANs instead learn a structured loss. Structured
losses penalize the joint configuration of the output. A

fake

G(x)

x

D

real

D

G
x y

x

Figure 2: Training a conditional GAN to map edges!photo. The
discriminator, D, learns to classify between fake (synthesized by
the generator) and real {edge, photo} tuples. The generator, G,
learns to fool the discriminator. Unlike an unconditional GAN,
both the generator and discriminator observe the input edge map.

large body of literature has considered losses of this kind,
with methods including conditional random fields [10], the
SSIM metric [56], feature matching [15], nonparametric
losses [37], the convolutional pseudo-prior [57], and losses
based on matching covariance statistics [30]. The condi-
tional GAN is different in that the loss is learned, and can, in
theory, penalize any possible structure that differs between
output and target.

Conditional GANs We are not the first to apply GANs
in the conditional setting. Prior and concurrent works have
conditioned GANs on discrete labels [41, 23, 13], text [46],
and, indeed, images. The image-conditional models have
tackled image prediction from a normal map [55], future
frame prediction [40], product photo generation [59], and
image generation from sparse annotations [31, 48] (c.f. [47]
for an autoregressive approach to the same problem). Sev-
eral other papers have also used GANs for image-to-image
mappings, but only applied the GAN unconditionally, re-
lying on other terms (such as L2 regression) to force the
output to be conditioned on the input. These papers have
achieved impressive results on inpainting [43], future state
prediction [64], image manipulation guided by user con-
straints [65], style transfer [38], and superresolution [36].
Each of the methods was tailored for a specific applica-
tion. Our framework differs in that nothing is application-
specific. This makes our setup considerably simpler than
most others.

Our method also differs from the prior works in several
architectural choices for the generator and discriminator.
Unlike past work, for our generator we use a “U-Net”-based
architecture [50], and for our discriminator we use a convo-
lutional “PatchGAN” classifier, which only penalizes struc-
ture at the scale of image patches. A similar PatchGAN ar-
chitecture was previously proposed in [38] to capture local
style statistics. Here we show that this approach is effective
on a wider range of problems, and we investigate the effect
of changing the patch size.

3. Method
GANs are generative models that learn a mapping from

random noise vector z to output image y, G : z ! y [24]. In

quetzal
Highlight

quetzal
Text Box
The Method section comes after introduction and related work.

quetzal
Text Box
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125-1134).All rights reserved by authors; reproduced here under fair use.�

contrast, conditional GANs learn a mapping from observed
image x and random noise vector z, to y, G : {x, z} ! y.
The generator G is trained to produce outputs that cannot be
distinguished from “real” images by an adversarially trained
discriminator, D, which is trained to do as well as possible
at detecting the generator’s “fakes”. This training procedure
is diagrammed in Figure 2.

3.1. Objective
The objective of a conditional GAN can be expressed as

LcGAN (G, D) =Ex,y[log D(x, y)]+

Ex,z[log(1 � D(x, G(x, z))], (1)

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it, i.e. G⇤ =
arg minG maxD LcGAN (G, D).

To test the importance of conditioning the discriminator,
we also compare to an unconditional variant in which the
discriminator does not observe x:

LGAN (G, D) =Ey[log D(y)]+

Ex,z[log(1 � D(G(x, z))]. (2)

Previous approaches have found it beneficial to mix the
GAN objective with a more traditional loss, such as L2 dis-
tance [43]. The discriminator’s job remains unchanged, but
the generator is tasked to not only fool the discriminator but
also to be near the ground truth output in an L2 sense. We
also explore this option, using L1 distance rather than L2 as
L1 encourages less blurring:

LL1(G) = Ex,y,z[ky � G(x, z)k1]. (3)

Our final objective is

G⇤ = arg min
G

max
D

LcGAN (G, D) + �LL1(G). (4)

Without z, the net could still learn a mapping from x
to y, but would produce deterministic outputs, and there-
fore fail to match any distribution other than a delta func-
tion. Past conditional GANs have acknowledged this and
provided Gaussian noise z as an input to the generator, in
addition to x (e.g., [55]). In initial experiments, we did not
find this strategy effective – the generator simply learned
to ignore the noise – which is consistent with Mathieu et
al. [40]. Instead, for our final models, we provide noise
only in the form of dropout, applied on several layers of our
generator at both training and test time. Despite the dropout
noise, we observe only minor stochasticity in the output of
our nets. Designing conditional GANs that produce highly
stochastic output, and thereby capture the full entropy of the
conditional distributions they model, is an important ques-
tion left open by the present work.

Encoder-decoder U-Net

x y x y

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [50] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.

3.2. Network architectures
We adapt our generator and discriminator architectures

from those in [44]. Both generator and discriminator use
modules of the form convolution-BatchNorm-ReLu [29].
Details of the architecture are provided in the supplemen-
tal materials online, with key features discussed below.

3.2.1 Generator with skips

A defining feature of image-to-image translation problems
is that they map a high resolution input grid to a high resolu-
tion output grid. In addition, for the problems we consider,
the input and output differ in surface appearance, but both
are renderings of the same underlying structure. Therefore,
structure in the input is roughly aligned with structure in the
output. We design the generator architecture around these
considerations.

Many previous solutions [43, 55, 30, 64, 59] to problems
in this area have used an encoder-decoder network [26]. In
such a network, the input is passed through a series of lay-
ers that progressively downsample, until a bottleneck layer,
at which point the process is reversed. Such a network re-
quires that all information flow pass through all the layers,
including the bottleneck. For many image translation prob-
lems, there is a great deal of low-level information shared
between the input and output, and it would be desirable to
shuttle this information directly across the net. For exam-
ple, in the case of image colorization, the input and output
share the location of prominent edges.

To give the generator a means to circumvent the bottle-
neck for information like this, we add skip connections, fol-
lowing the general shape of a “U-Net” [50]. Specifically, we
add skip connections between each layer i and layer n � i,
where n is the total number of layers. Each skip connec-
tion simply concatenates all channels at layer i with those
at layer n � i.

3.2.2 Markovian discriminator (PatchGAN)

It is well known that the L2 loss – and L1, see Fig-
ure 4 – produces blurry results on image generation prob-
lems [34]. Although these losses fail to encourage high-

quetzal
Highlight

quetzal
Highlight

quetzal
Text Box
Indicates that the high-level problem will be formalized in this section.

quetzal
Text Box
Note the use of subheadings to organize content.

quetzal
Text Box
Nested levels of subheading for easy section navigation.

quetzal
Highlight

quetzal
Highlight

quetzal
Highlight

quetzal
Text Box
Introduction to GAN and cGAN, presuming ML expert audience.

Genevieve Flaspohler
Highlight

quetzal
Text Box
Intuition building for approach.

quetzal
Highlight

quetzal
Text Box
Intuition building for approach, including discussion of failed experiments and explanation of a potentially controversial experimental decision (to not condition on random noise z).

quetzal
Highlight

quetzal
Text Box
Use technical figures to aid a reader in understanding difficult technical ideas in the Methods.

quetzal
Text Box
Description of technical contribution is the primary focus of the section.

frequency crispness, in many cases they nonetheless accu-
rately capture the low frequencies. For problems where this
is the case, we do not need an entirely new framework to
enforce correctness at the low frequencies. L1 will already
do.

This motivates restricting the GAN discriminator to only
model high-frequency structure, relying on an L1 term to
force low-frequency correctness (Eqn. 4). In order to model
high-frequencies, it is sufficient to restrict our attention to
the structure in local image patches. Therefore, we design
a discriminator architecture – which we term a PatchGAN
– that only penalizes structure at the scale of patches. This
discriminator tries to classify if each N ⇥N patch in an im-
age is real or fake. We run this discriminator convolution-
ally across the image, averaging all responses to provide the
ultimate output of D.

In Section 4.4, we demonstrate that N can be much
smaller than the full size of the image and still produce
high quality results. This is advantageous because a smaller
PatchGAN has fewer parameters, runs faster, and can be
applied to arbitrarily large images.

Such a discriminator effectively models the image as a
Markov random field, assuming independence between pix-
els separated by more than a patch diameter. This connec-
tion was previously explored in [38], and is also the com-
mon assumption in models of texture [17, 21] and style
[16, 25, 22, 37]. Therefore, our PatchGAN can be under-
stood as a form of texture/style loss.

3.3. Optimization and inference

To optimize our networks, we follow the standard ap-
proach from [24]: we alternate between one gradient de-
scent step on D, then one step on G. As suggested in
the original GAN paper, rather than training G to mini-
mize log(1 � D(x, G(x, z)), we instead train to maximize
log D(x, G(x, z)) [24]. In addition, we divide the objec-
tive by 2 while optimizing D, which slows down the rate at
which D learns relative to G. We use minibatch SGD and
apply the Adam solver [32], with a learning rate of 0.0002,
and momentum parameters �1 = 0.5, �2 = 0.999.

At inference time, we run the generator net in exactly
the same manner as during the training phase. This differs
from the usual protocol in that we apply dropout at test time,
and we apply batch normalization [29] using the statistics of
the test batch, rather than aggregated statistics of the train-
ing batch. This approach to batch normalization, when the
batch size is set to 1, has been termed “instance normal-
ization” and has been demonstrated to be effective at im-
age generation tasks [54]. In our experiments, we use batch
sizes between 1 and 10 depending on the experiment.

4. Experiments
To explore the generality of conditional GANs, we test

the method on a variety of tasks and datasets, including both
graphics tasks, like photo generation, and vision tasks, like
semantic segmentation:

• Semantic labels$photo, trained on the Cityscapes
dataset [12].

• Architectural labels!photo, trained on CMP Facades
[45].

• Map$aerial photo, trained on data scraped from
Google Maps.

• BW!color photos, trained on [51].
• Edges!photo, trained on data from [65] and [60]; bi-

nary edges generated using the HED edge detector [58]
plus postprocessing.

• Sketch!photo: tests edges!photo models on human-
drawn sketches from [19].

• Day!night, trained on [33].
• Thermal!color photos, trained on data from [27].
• Photo with missing pixels!inpainted photo, trained

on Paris StreetView from [14].

Details of training on each of these datasets are provided
in the supplemental materials online. In all cases, the in-
put and output are simply 1-3 channel images. Qualita-
tive results are shown in Figures 8, 9, 11, 10, 13, 14, 15,
16, 17, 18, 19, 20. Several failure cases are highlighted
in Figure 21. More comprehensive results are available at
https://phillipi.github.io/pix2pix/.

Data requirements and speed We note that decent re-
sults can often be obtained even on small datasets. Our fa-
cade training set consists of just 400 images (see results in
Figure 14), and the day to night training set consists of only
91 unique webcams (see results in Figure 15). On datasets
of this size, training can be very fast: for example, the re-
sults shown in Figure 14 took less than two hours of training
on a single Pascal Titan X GPU. At test time, all models run
in well under a second on this GPU.

4.1. Evaluation metrics
Evaluating the quality of synthesized images is an open

and difficult problem [52]. Traditional metrics such as per-
pixel mean-squared error do not assess joint statistics of the
result, and therefore do not measure the very structure that
structured losses aim to capture.

To more holistically evaluate the visual quality of our re-
sults, we employ two tactics. First, we run “real vs. fake”
perceptual studies on Amazon Mechanical Turk (AMT).
For graphics problems like colorization and photo gener-
ation, plausibility to a human observer is often the ultimate
goal. Therefore, we test our map generation, aerial photo
generation, and image colorization using this approach.

quetzal
Highlight

Genevieve Flaspohler
Text Box
Subheading title summarizes technical focus.

quetzal
Text Box
The experiments section immediately follows the methods

quetzal
Highlight

quetzal
Text Box
Some details about experiments - learning rate and momentum parameters - are included. These are likely placed here because they are "universal" parameters that the authors believe to be critical to the system.

quetzal
Text Box
The Experiments section also includes evaluation metrics and results, demonstrating the blending between Methods, Experiments, and Results that happens in many CS papers.

quetzal
Highlight

